
Productivity in Common Operating Systems

Productivity in Common
Operating Systems

Unix Essentials

LESTER HIRAKI

TORONTO METROPOLITAN UNIVERSITY

TORONTO

Productivity in Common Operating Systems Copyright © 2022 by Lester Hiraki is
licensed under a Creative Commons Attribution-NonCommercial 4.0 International
License, except where otherwise noted.

Cover photo by Andrej Lišakov on Unsplash

This book was produced with Pressbooks (https://pressbooks.com) and
rendered with Prince.

Introduction
LESTER HIRAKI

Welcome to Productivity in Common Operating Systems!
The goal of this book is to provide the interested learner with the

essentials to work in a Unix environment.
The focus is on the user’s perspective to enable the user to be

productive in a Unix environment. Topics include understanding
and navigating the file system, using common commands, and
automating tasks. Emphasizing the user’s perspective, the scope of
this book does not include topics such as system administration,
installation, or networking.

To gain the most out of this book, it is recommended that the
learner have access to a Unix or Unix-like system, specifically with
command line access, so as to be able to practice commands and
programming.

This book is intended for adoption in the freshmen or sophomore
year of a technical program (e.g. computer science, engineering,
STEM, etc.). No prior knowledge or experience with Unix is
expected; however, familiarity with computer programming (coding
and debugging) is strongly recommended.

UNIX is a registered trademark of The Open Group. The Open
Group is not affiliated with this resource. Linux® is the registered
trademark of Linus Torvalds in the U.S. and other countries. In this
book, Unix (mixed case) refers to Unix-like operating systems such
as Linux as well as UNIX.

Introduction | 1

2 | Productivity in Common Operating Systems

1. The Hierarchical File
System

Pre-amble

Unix is primarily a command line oriented operating system. Most
commands are an action which is performed on an object, typically
a file or directory. In order to be productive in a Unix environment,
one must be intimately familiar with the concept of the hierarchical
file system. Mastering this concept is fundamental to successful
work in a Unix environment and is the key takeaway of this section.

Hierarchical File System

The Unix file system is that of an inverted tree. Imagine a tree with
leaves and branches but turned upside down with the root or main
trunk at the top. The main trunk branches off to smaller branches
and eventually leaves. By analogy, the root directory typically
contains several directories (folders) which in turn contain other
directories (subdirectories) and/or files. Just as a tree branch can
have smaller branches or leaves, a leaf cannot have other branches
or leaves. Similarly, the difference between a directory and a file
is that a directory can contain other directories or files, but a file
cannot contain other directories or files — a file is a terminal node.

The figure below shows the typical layout of a Unix file system.
While systems vary greatly in size, most will have at least these
directories. The convention in this diagram uses an ellipse to depict
a directory and a rectangle to depict a file.

The Hierarchical File System | 3

Typical
hierarchical
file structure
of a Unix
system

Explanation of common subdirectories:

Directory Remarks

etc contains operation and administrative files

bin contains executable commands

dev contains the devices connected to the system (printers,
terminals, etc…); these devices still appear as files

users*

contains user files and directories. *The directory name
is not standard and varies between systems. Other
common variations are things like “home”. Some larger
systems will even have more than one top-level user
directories such as “faculty”, “staff”, “classof31”, etc.

4 | Productivity in Common Operating Systems

How to Specify a File or Directory in Unix

As most Unix commands act on files or directories, it is necessary to
be able to specify such an entity.

There are two methods to specify a file or directory, absolute and
relative:

Absolute

To specify a file or directory using the absolute method, start with
the root directory (/) and write each directory that is encountered
on the path to the directory or file being specified. Separate each
directory with a “/” forward slash character.

Examples

Specify the etc directory in the above system.

/etc

Specify the file named passwd in the above system.

/etc/passwd

The Hierarchical File System | 5

Specify the file named ls in the above system.

/bin/ls

Specify the file named mydata in the above system.

/users/raj/work/mydata

Key Takeaways

The absolute specification always starts with a “/”
(forward slash).

Relative

When working on Unix, the user will always “be” at some logical
position within the hierarchy. This position is termed the “current

6 | Productivity in Common Operating Systems

working directory” or simply the “current directory”. The
specification of a relative path is relative to this current directory
position. Note that it is possible to change one’s current directory
while working; this will be discussed in a later chapter.

To specify a file or directory using the relative method, start with
the current directory and write each directory that is encountered
on the path to the directory or file being specified. Separate each
directory with a “/” forward slash character.

Examples

Specify the file mydata with current directory:
/users/raj/

work/mydata

Specify the file mydata with current directory:
/users/raj/work/

mydata

The Hierarchical File System | 7

Specify the file report with current directory:
/users/raj/work

../report

As the file report is not contained in
the current directory, it is necessary to
go up one level first (to raj) to be able to
reach the file report. Here the double
dots mean “parent directory” or one level
up.

Key Takeaways

The relative specification never starts with a “/” (forward
slash).

When should one use absolute vs. relative specifications? In
many cases both are acceptable. One may notice that a relative
specification usually requires less typing. Who likes more typing?

8 | Productivity in Common Operating Systems

An absolute path is preferred when the user or programmer values
portability allowing the specification to be used from any position
on the system by any user.

Points to Consider

• Names for files and directories are case-sensitive. Thus
report, Report, and REPORT are all distinct.

• Names may include any letters, digits, and some special
characters (period, comma, underscore, etc.) but not /, <, >, &,
:, |.

• Names may be up to 255 characters in length.
• There is no requirement for file extensions (few characters

after a period). All of the following are valid names:

◦ report

◦ letter_to_bob.text

◦ forecast.July,Version1

◦ notes.doc

• Names must be unique within a directory (no duplicates
allowed). This is automatically enforced by the operating
system. In the raj directory, it would not be possible to create
another file or directory called work. Consider the analogy of
human families: Two siblings would not share the same name,
but a cousin, uncle, or grandparent could share the same name
without conflict.

The Hierarchical File System | 9

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=25#h5p-1

Home Directory

The home directory is a private area for the user files and
directories. Each user will have a directory name matching the login
name assigned by the system administrator.

While it is correct and possible to specify a home directory using
the absolute and relative methods aforementioned, there exists an
abbreviation consisting of a ~ (tilde) followed by the user’s login
name. Advantage: This avoids having to know the name of the user
file area which is non-standard: some installations call it users,
others call it home, still others have their own conventions.

Examples

Eg. Raj’s home directory would be

~raj

Eg. A file in his directory would be

~raj/report

10 | Productivity in Common Operating Systems

The Hierarchical File System | 11

2. Common Unix Commands

While there are hundreds of Unix commands, fortunately it is not
necessary to know all of them. In fact, one can achieve a significant
level of productivity knowing just a couple of dozen. Here are some
of the most common and useful commands.

All commands are case sensitive.

Spaces are a BIG DEAL in Unix

When issuing commands, in order for Unix to tell
when a command finishes and when parameters and file
names start and end, every item (or token) on a
command line must be separated by whitespace (one or
more space characters). One of the most common
causes of frustration is failure to put whitepace between
items on the command line, or putting whitespace
where it should not be.

Just as in English, there is a big difference in meaning
between “no table” and “notable”, so is the case in Unix.

Right:

ls /etc

Wrong:

ls/etc

12 | Productivity in Common Operating Systems

Unix commands are a single word requesting an action.
Sometimes the action is standalone, but most actions are applied to
some object like a file or directory. At the point in the command
where it expects the name of a file, say, this is where you specify the
file in the form of an absolute or relative reference as described in
the previous chapter.

Command
What does
it do?

Example usage

Key Takeaways

• Spaces are a BIG DEAL in Unix: They are needed
between commands, parameters, and filenames.

• All commands are case-sensitive (usually all
lowercase)

More Key Takeaways

Common Unix Commands | 13

• Command options (e.g. -l, or -d, etc.) are specific to
the command. For example, while both the ls and and
cp command both have a “-l” option, the option
means different things in each command. Command
options are not mix and match.

• Command options may be listed separately or
combined. The following are equivalent:

◦ ls -ld

◦ ls -l -d

More Unix Commands

All the commands below require some sort of input,
typically a file, but the commands do not modify the
input file. The outputs will contain portions of the input
files, but the input files are never changed.

14 | Productivity in Common Operating Systems

Command
What
does it
do?

Example usage

cut

Print
selected
parts of
lines from
each FILE
to
standard
output.

display columns 1-10 and 20-23 of myfile

cut -c1-10,20-23 myfile

display the 3rd and 5th fields of the /etc/
passwd file

cut -f3,5 -d: /etc/passwd

paste

merge
lines of
files

If cat joins
vertically,
think of
paste as a
horizontal
version of
cat.

display file1, file2, and file3 side-by-side

paste file1 file2 file3

wc

print
newline,
word, and
byte
counts
for each
file

display the number of lines, words, and
characters for the file chapter3

wc chapter3

display only the number of lines

wc -l chapter3

grep
print lines
matching
a pattern

display lines matching the string Total in
the file sales

grep Total sales

Common Unix Commands | 15

Command
What
does it
do?

Example usage

sort
sort lines
of text
files

display a sorted version of the file namelist

sort namelist

16 | Productivity in Common Operating Systems

3. Input and Output:
Redirection and Pipes

By design most Unix commands are small and simple in their
functionality. To solve beyond the trivial requires the use of several
steps or commands. How to sequence and combine commands
in Unix requires an understanding of how input and output is
managed. The next sections will introduce these concepts and
show how more complex problems may be solved.

Filters

One may think of a filter as a black box with an input and an output.
Most Unix commands can be thought of as a filter. The inputs and
outputs have been given formal names. The input is named standard
input (STDIN); the output is named standard output (STDOUT); and
there is a secondary output named standard error (STDERR) which
will be discussed in more detail later. These inputs and outputs
are associated with file descriptors or stream numbers 0, 1, and 2
respectively.

By default, Unix commands read from standard input and print to
standard output. Any error messages are sent to standard error

Input and Output: Redirection and Pipes | 17

Examples of Unix commands as filters

Command Description

cut reads from standard input and passes selected
portions (columns, fields) to standard output

grep reads from standard input and prints matching lines to
standard output

head & tail reads from standard input and prints the first (last)
few lines to standard output

cat a transparent filter: reads from standard input and
prints the same to standard output

wc reads from standard input and prints summary
information to standard output

... not an exhaustive list

Redirection

When working interactively in a Unix session, the default setup is to
have standard input draw from the keyboard, and standard output
(as well as standard error) directed at the screen. In other words,
a command reading from standard input will wait for keystrokes. A
command printing to standard output will have its output appear on
the terminal screen.

18 | Productivity in Common Operating Systems

Default
association
of keyboard
and screen to
filter.

Redirection
of Standard
Output

While this arrangement works well, there will come situations
where the user will want to save the output of a command to a file,
or substitute a file for keyboard input. This is accomplished through
the concept of redirection where one of the inputs or outputs is
associated with a file.

Redirection of standard output (> operator)

The user can save the standard output of any Unix command by
redirecting standard output to a file using the > operator.
Graphically, the concept is illustrated as follows.

Input and Output: Redirection and Pipes | 19

Redirection
of Standard
Error

Operator syntax Examples and explanation

cmd > some_file

e.g.

cat chapter1 > book

•
if the file already exists it will overwrite it

cmd >> some_file

e.g.

cat chapter3 >> book

• the >> operator appends an existing file

Redirecting standard error (2> operator)

The user can save the standard error of any Unix command by
redirecting standard error to a file using the 2> operator.
Graphically, the concept is illustrated as follows.

20 | Productivity in Common Operating Systems

Operator syntax Examples and explanation

cmd 2> some_file

e.g.
cat chapter1 chapter4 2> errors

• saves error messages in file errors but standar
output is displayed on the screen

cmd > some_file 2> another_file

e.g.
cat chapter1 > book 2> errors

• saves standard output to file book, and sa
standard error messages in file errors

Merging two streams (>& operator)

The user can save both standard output and standard error of any
Unix command. This is accomplished by first redirecting standard
error to a file, and then merging standard error with standard
output. The syntax of the merge operator is m>&n where stream m
is merged with wherever stream n is already going. Graphically, the
concept is illustrated as follows. Here stream 2 (standard error) is
merged with stream 1 (standard output).

Input and Output: Redirection and Pipes | 21

Standard Output and Standard Error are merged (combined) and
re-directed to a file

Operator syntax Examples and explanation

cmd > out_file 2>&1

e.g.
cat text1 junk text3 > both 2>&1

• saves standard output and standard error to file both
• Explanation: Unix parses left to right. First standard output is

redirected to file “both”. Then the merge operator (>&) mer
(blends) standard error (stream 2) with where standard output
(stream 1) is already going (to file “both”).

• Caution: How about

cat text1 junk text3 > both 2> both

• This is an incorrect method of trying to merge two streams.
causes a race condition (two streams competing for the same file
and correct results are not guaranteed.

Redirecting standard input (< operator)

The user can redirect standard input from a file instead of the

22 | Productivity in Common Operating Systems

Redirection
of Standard
Input from a
file

keyboard to any Unix command using the < operator. Graphically,
the concept is illustrated as follows.

Operator syntax Examples and explanation

cmd < some_file

cat < appendix

While it may appear that the “<” in the above command does not se
anything (works the same without the “<“), the reason is that the c
is smart and knows to look for input on the command line. Unless a c
is specifically designed to inspect the command line for input argumen
necessary to use the “<” for redirection of standard input.

Consider a more basic example of a simple script requesting input fr
keyboard. To substitute a file, it would be necessary to issue the f
command, where the file “keystrokes” contains what the user would ha
typed.

myscript < keystrokes

Here “myscript” represents a user-written Unix script (program), not a Unix
command.

Pipes

It is often the case that a problem in Unix is solved with multiple
commands. Typically the output of the first command is saved in
a file which is then used as input to a subsequent command. The

Input and Output: Redirection and Pipes | 23

use of a pipe is considered a refinement of this approach potentially
simplifying the solution.

Problem: To determine the number of entries in
a directory

Method 1

Graphical
view code explanation

ls ->
file_list
-> wc

ls /etc > file_list
wc -l file_list
rm file_list

• save output of ls
command in file_list

• run wc command to
count lines

• delete temporary file
file_list

24 | Productivity in Common Operating Systems

Method 2

Graphical
view code explanation

ls ->

-> wc

ls /etc | wc -l
• save output of ls command is

sent directly to input of wc
command

• no temporary file needed

Definition:

A pipe connects STDOUT of previous command to
STDIN of next command

You can use a pipe multiple times creating a pipeline.

e.g.
cmd1 | cmd2 | cmd3 | cmd4

Building a pipeline should be an iterative process. Condense
stepwise as you know the solutions work, otherwise there might be
errors that might be difficult to detect from a single pipeline

Input and Output: Redirection and Pipes | 25

Start out like this:

cmd1 > out1
cmd2 < out1 > out2
cmd3 < out2

…

Key Takeaways

1. Redirection: Use between a command and a file
2. Pipe: Use between commands

Making your script executable

1. create file containing unix commands
2. Once per file, type either:

◦ chmod u+x myscript
◦ chmod 700 myscript

3. To run, type ./myscript

26 | Productivity in Common Operating Systems

4. Shell Variables, Quotes,
Command Substitution

Shell Variables

Unix is an operating system but also the name given to its scripting
(programming) language. In order to be useful, a computer language
needs to be able to store data. Unix supports this capability with
shell variables.

There are three kinds of shell variables:

1. special
2. environment
3. program

Special variables

Special variables are unlike what you may have seen in other
programming languages. Rather special variables are created and
set by the operating system automatically. Consider the following
examples:

Positional parameters ($1, $2, …)

Recall that the cat program allows the user to specify inputs as
command-line arguments: (In the following examples, the leading

Shell Variables, Quotes, Command Substitution | 27

dollar sign represents the command prompt; do not type the leading
dollar sign.)

$ cat ch1 ch2 ch3

Imagine that you would like to write your own script allowing the
user to specify inputs as command-line arguments as in.

$ myscript apple cherry

Example

$ cat arg_demo
#!/bin/bash
echo The 1st argument is $1
echo The 2nd argument is $2
$
$./arg_demo apple cherry
The 1st argument is apple
The 2nd argument is cherry

number of command line arguments ($#)

The special variable $# holds the number of command-line
arguments specified when your script was run.

28 | Productivity in Common Operating Systems

Examples

$ cat numeg
#!/bin/bash
echo The number of command line arguments is $#
$
$./numeg apple cherry
The number of command line arguments is 2
$

return code of previous command ($?)

Every Unix command generates a return code typically indicating
success or failure. The value of this return code is stored in the
special variable $?. Thus each time a Unix command is run the $?
variable is updated automatically to hold the return code of the
most recently executed Unix command. The use of the return code
is important and will become apparent in the chapter on control
structures.

Environment variables

Environment variables hold information about the users’s current

Shell Variables, Quotes, Command Substitution | 29

settings and configuration. By convention, they are typically all
UPPERCASE. To display them, type ‘env’

Example

lhiraki@metis:~$ env
SHELL=/bin/bash
PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/snap/bin:/usr/courses/bin/x86_64
JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
EDITOR=vi
LANGUAGE=en_CA:en
LPDEST=eng206c
lhiraki@metis:~$

Here is an abridged list of environment variables. Some
of the typical environment variables include SHELL (current
shell), PATH (list of directories the operating system will
search in order to find a command), EDITOR (preferred
editor), LANGUAGE (preferred display language), LPDEST
(preferred printer destination).

Program variables

Program variables are the type of variable that typically come to
mind when one thinks of variables in a computer programming
language. Program variables are variables which you as the
programmer create and set. As Unix is a prototyping language, it

30 | Productivity in Common Operating Systems

is common to dispense with many of the formalities required for
variable declarations, etc.

Program variables hold a string, i.e. text, and can be used
anywhere text could appear in a program such as a filename, part
of the file name, or even a Unix command itself. A variable can hold
only one value at a time.

The naming convention for program variables is to use lowercase.
Specifically uppercase program variable names should be avoided so
as to prevent confusion with environment variables and accidentally
overwriting an environment variable.

Eg. 1 An easy way to create and set a program variable is using an
assignment statement.

temp_name=/usr/temp
cp myfile $temp_name

Assignment statements copy the value to the right of the equal
sign to the variable on the left. Important: Assignment statements
must not contain spaces, especially around the equal sign.

Shell Variables, Quotes, Command Substitution | 31

Eg. 2

month=september
echo the current month is $month

When to use $ with variables

When writing to a variable, i.e. setting or changing its contents, do
not use the dollar sign. When reading a variable, i.e. accessing its
contents, you must use the dollar sign.

Key Takeaway – When to use $ with variables:

Writing to a variable: no dollar sign

Reading from a variable: use dollar sign

Editorial Remark:

32 | Productivity in Common Operating Systems

One of the key factors affected software maintenance
costs is code readability. Most of the time (cost) of
maintaining software is spent in having designers read
and understand existing code. One way to control and
reduce costs (business competitiveness) is to ease
readability. By choosing variables which reflect their
contents, it makes it easier to understand the code.

Choose self-describing variable names:

Good variable
names: Bad variable names:

• sum
• total
• x_value
• length
• count

• a,b,c….
• var1, var2, var3….

read

The read command collects characters from standard input (STDIN)
and stores them in a variable. The read command is typically used
in an interactive script to collect user input after an appropriate
prompt message. As the read command draws from standard input,
and standard input can be redirected from a file, it is possible to
prepare inputs (answers) in a file and run the script in a non-
interactive fashion.

Shell Variables, Quotes, Command Substitution | 33

Example using read command

$ cat readeg
echo -n 'What is your name? '
read name
echo Hello $name, pleased to meet you!
$
$./readeg
What is your name? Mohammed
Hello Mohammed, pleased to meet you!
$

What does the option “-n” do in the echo command
above?

Hint: type “man echo”. To exit the manual, press “q”.

Key Takeaways

read vs. command line arguments

• Both are ways the user can supply input to a

34 | Productivity in Common Operating Systems

program. Command line arguments are placed on the
command line before pressing <ENTER> to run the
program. The values are accessed within one’s
program using $1, $2, etc.

• The “read” command causes the program to wait
for keyboard input (if STDIN has not been redirected
from a file). The input is stored in and later accessed
from a program variable.

Which method should you use? Refer first to any
program requirements. (Does it say, “Prompt the user to
enter …” or “specify as a command line argument”?)

Quotes

Single quotes:

Problem:

$ grep Al Shaji employee_list
grep: can’t open Shaji

Solution:

$ grep 'Al Shaji' employee_list

Single quotes causes Unix to take everything within the single

Shell Variables, Quotes, Command Substitution | 35

quotes literally. This is how you would prevent interpretation of
characters which would normally have special meaning, for example
the space character separating command line arguments.

Double quotes

• Recognize $, \, ` (backtick or backquote)

Exercise 1: Try this out and see the difference double quotes makes

heading=' Name Addr Phone'
echo $heading
echo "$heading"

Exercise 2: Try this out and see the difference double quotes makes

read operator # enter asterisk *
echo $operator
echo "$operator"

36 | Productivity in Common Operating Systems

The double quotes are similar to single quotes in that Unix takes
what is within the quotes literally. However, double quotes are
“smarter” in that variables and selected meta-characters are
interpreted and expanded in spite of the usual literal nature of
quotes.

Home directory potential tricky issue (tilde is
protected i.e. not expanded within quotes).

Instead of:

datafile="~jasmin/rawdata"
cat $datafile # produces "No such file or directory" error

Say (solution 1):

datafile=~jasmin/rawdata
cat $datafile

Say (solution 2):

datafile="~jasmin/rawdata"
eval cat $datafile

Command substitution

Sometimes a programmer wishes to run a command and use its
output at some point within a program. While it is possible to
redirect output to a temporary file, load the contents of the file, and

Shell Variables, Quotes, Command Substitution | 37

then promptly delete it, for small tasks, it is more convenient and
efficient to use the technique of command substitution and avoid
extra disc access.

Eg. 1 Newbie’s first guess

today=date
echo $today

Eg. 2 This is the way to do it.

today=$(date) (old version today=`date`)
echo $today

38 | Productivity in Common Operating Systems

Syntax:

$(unix_command)

The mechanics of command substitution works as follows:

1. Unix will run the command within the parentheses as if it were
typed at the keyboard. The command may include options,
command line arguments, or even be a script.

2. Instead of being displayed on the screen, the standard output
(STDOUT) of the command is substituted at the exact position
of the call ($(unix_command)).

The command substitution may be made anywhere in a program;
however, it is often used on the right-hand side of an assignment
statement (to save the output in a variable), or within an echo
statement.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=35#h5p-10

Shell Variables, Quotes, Command Substitution | 39

5. Control Structures - Part 1
- branching
LESTER HIRAKI

In order to support control structures (branching, looping, etc.), all
computer languages need some method of evaluating a condition.
In Unix, the command to evaluate a condition is the test command.
The test command is often at the heart of most control structures
in Unix.

test

What does the test command do? It evaluates a condition and
sets the special shell variable $?, the return code. Much to the
confusion of new users, the test command is silent in that it does
not print anything to standard output. Thus when running the test
command, it appears as if to do nothing. To check the return code,
one may simply print its value with an echo statement.

Example 1: Check if a file is readable.

$ test -r myfile
$ echo $?

40 | Productivity in Common Operating Systems

0

How does one interpret the return code?
Unix convention:

0 (zero) means TRUE

not 0 (not zero) means FALSE

Example 2: Compare if two strings are equal.

$ test "this" = "that"
$ echo $?
1

Synonym to the test command: [

For reasons of readability, many programmers with use the
synonym or abbreviation for the test command which is the left

Control Structures - Part 1 - branching | 41

square bracket: [. In all examples above, replace the word test
with the left square bracket. Note that a matching right square
bracket needs to be added for syntactic reasons. As with all Unix
commands, spaces are a big deal and a space is required after the
left square bracket and before the right square bracket.

Example 3: Synonym to the test command [

$ [-r myfile] # note the space after the left bracket
$ echo $?
0

Control Structures

if

The if statement in Unix is the basic two-way branch.

Syntax

42 | Productivity in Common Operating Systems

if unix_statements
then

actions_true
else # optional

actions_false
fi

How does the if statement work? Here is the sequence of
operations. The if statement will:

1. Run all the unix_statements.
2. Check the return code ($?) of the last statement in the list (just

prior to the keyword “then”.
3. If the return code is true. the “then” clause is executed (

actions_true). If the return code is false, the “else” clause is
executed (actions_false). The else clause is optional (can be
left out if not needed).

Example of if

#!/bin/bash
comfort=20
temperature=18
if echo The current temperature is $temperature

echo Temperature for comparison is $comfort
[$temperature -lt $comfort]

Control Structures - Part 1 - branching | 43

then
echo It is cold.

else
echo It is warm.

fi

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=37#h5p-5

Nested conditions are supported in Unix. Any statement in the
“then” or “else” clause can itself be another if statement.

elif

Although the if statement is primarily a two-way branch (e.g. true
or false), a multi-way branch (e.g. red, yellow, green) can be coded
using a set of nested if statements. Some computer languages
support an “else-if”-type clause; Unix is one of them.

There is an “else-if” clause called “elif” which requires a statement
just like the if clause.

Example: elif

44 | Productivity in Common Operating Systems

if [$temperature -lt $comfort]
then

echo It is cold.
elif [$temperature -eq $comfort]
then

echo It is perfect.
else

echo It is warm.
fi

Note that the “elif” clause is actually a clause of the main
“if” and not a nested if statement. Thus, there is only one
“fi” (end if) required for each opening “if” regardless of how
many “elif” clauses there are.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=37#h5p-6

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=37#h5p-7

Control Structures - Part 1 - branching | 45

case

Many computer languages support a multi-way branch. Unix is
included as one of them.

Simplified syntax:

case $variable
in

val1) action1;;
val2) action2;;
*) default action;;

esac

The keywords are case, in, and esac. The double
semi-colon is a syntactic requirement to separate the
inner clauses of the case statement.

Example: Flexible command line processing.

46 | Productivity in Common Operating Systems

Allow your user to run your script in various ways.
Accommodate all of the following invocations.

$./myscript # user omits filename; give second chance
$./myscript chapter3 # preferred syntax; just proceed
$./myscript chapter3 chapter5 # multiple arguments not supported;
inform user

Place this code snippet at the beginning of your script like this:
$ cat myscript
case $# in

0) echo Enter file name:
read arg1;;

1) arg1=$1;;
*) echo invalid number of arguments

echo "Syntax: $0 filename"
exit 1;;

esac
rest of program continues after esac
$

General syntax:

case match_string_expr in
match_pattern) action1;;
match_pattern) action2;;

Control Structures - Part 1 - branching | 47

...

esac

Example: Demonstrate pattern matching use in case statement.
Print a message about the length of the current month.

lhiraki@metis:~/test$ cat case_month
case $(date '+%m') in
01|03|05|07|08|10|12)

echo This is a long month;;
04|06|09|11)

echo This is a short month;;
02)

echo This is the shortest month;;
*)

echo Something wrong with date command;;
esac

Example run in September

lhiraki@metis:~/test$./case_month
This is a short month
lhiraki@metis:~/test$

48 | Productivity in Common Operating Systems

Flow of case
statement:
one entry
point, only
one action
chosen.

The date command is called with an option to return the
numerical value of the month (e.g. Jan=01, Feb=02, etc.).
Depending on the month, a message is printed regarding
the length of the month. Months with the same number of
days are grouped together using a pattern with the OR
(vertical bar) syntax.

Defensive programming

Well the previous example is rather trivial and the date command
has been well tested over the years, it is considered good practice
to always have a default clause even if you think you have covered
all possible conditions.

Summary

Control Structures - Part 1 - branching | 49

The match_string_expr is matched against each match_pattern
in the order coded. At the first match, the corresponding action is
taken. After one action is completed, the case statement terminates
and execution continues after the esac (end case). There is no “fall-
through”. The case statement will not execute multiple actions.

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=37#h5p-8

shift

When processing multiple command-line arguments, it may be
necessary to manipulate them to facilitate processing.

The shift command moves all command-line arguments one
position to the left. For example the second command line
argument is moved into the first position; the third command line
argument is moved into the second position, and so forth.

Example of shift command

lhiraki@thebe:~/test$ cat shifter

50 | Productivity in Common Operating Systems

#!/bin/bash
echo The 1st arg is $1
echo The 2nd arg is $2
shift
echo The 2nd arg is $1
shift
echo The 3rd arg is $1

Execution results in:

lhiraki@thebe:~/test$./shifter apple pear grape
The 1st arg is apple
The 2nd arg is pear
The 2nd arg is pear
The 3rd arg is grape
lhiraki@thebe:~/test$

The exit command

The exit command does two things:

1. It terminates the current shell (or script), returning control to
the calling shell, if any.

2. It sets the return code ($?) for your script.

Control Structures - Part 1 - branching | 51

Example – exit command usage

The trivial but illustrative script exit_example shows the
exit command setting return code for the script to 3 and
then terminating the script. Control returns to the calling
program, in this case just back to the operating system
prompt.

$ cat exit_example
#!/bin/bash
exit 3
echo This line never executed.

$./exit_example
$ echo $?
3
$

Note that one must inspect the return code ($?)
immediately after running exit_example. The return code
is updated (overwritten) by each Unix command executed.

The exit command is typically used to terminate a script midway
through often due to an errror condition. The other primary use of
the exit command is for a sub-script to communicate information
back to the calling script.

52 | Productivity in Common Operating Systems

Example – parent/child script relation

parent child

./child
ret_val=$?
case $ret_val

...
exit 2

...
exit 0

Note: parent-child relationship can be used for team
project where multiple people can work on the same file at
the same time.

Shebang line

To specify which interpreter Unix should use when executing your
script, as the first line of the file place the path to the interpreter
after “#!”. While the number sign character (#) normally introduces
a comment, when used with the exclamation mark at the beginning
of a file, Unix will load the interpreter specified in the path to run
the rest of the script file.

This is especially important to make your script portable in Unix
environments. If you write your script in bash, and you give your
script for someone else to use who works in a c-shell or Korn shell

Control Structures - Part 1 - branching | 53

environment, your script may not work properly. To ensure that the
script is run under bash, you must specify the shebang line.

Careful: The shebang line must be the first line of the file, not just
the first line of text, or the first line of code. A common mistake is
to have a blank line as the first line, or some comments above the
shebang line. Unix does not look beyond the first line of the file in
order to identify the expected interpreter.

Right Wrong Wrong

#!/bin/bash
#comments
#comments
code begins here

#comments
#comments
#!/bin/bash
code begins here

#!/bin/bash

code begins here

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=37#h5p-9

54 | Productivity in Common Operating Systems

6. Control Structures - Part 2
- Loops

Eventually you will need to repeat actions. A practical way to repeat
actions without repeating code is achieved with the construct of a
loop.

Computer Science Loop Concepts

The construct of a loop allows for the repetition of
actions without repeating code.

General Loop (Concept)

The most general flow of control is illustrated in the
flowchart below (General). Observe that there can be a
set of actions (Block 1) which is performed regardless on
entry into the loop. Then a conditional check is made to
determine continuation of the loop. If satisfied, further
actions within the loop (Block 2) will be performed.

Not all computer languages support the General loop
construct (Unix

Control Structures - Part 2 - Loops | 55

does support a General loop). If a computer language
does not support the General loop construct, it will
usually support one or more of the specific cases of the
General loop. For example, C Language supports both a
While and a Do-While construct but not the General
loop construct.

While Loop (Concept)

The While Loop, as a concept, is a special case of a
General Loop which has no actions for Block 1. In this
case, the condition is checked as a first action on entry
into the loop construct. See flowchart below (While).

Do-While Loop (Concept)

The Do-While Loop, as a concept, is a special case of a
General Loop which has no actions for Block 2. In this
case, the Block 1 code is executed on entry into the loop
construct, and the condition is checked at the end of
the loop construct. See flowchart below (Do-While).

56 | Productivity in Common Operating Systems

General While Do-W

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=41#h5p-3

Control Structures - Part 2 - Loops | 57

An interactive H5P element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.torontomu.ca/

opsyshiraki/?p=41#h5p-4

Loops in Unix

There are three commands in Unix to support loops.

• while
• until
• for

while command

The while command in Unix implements the General Loop
construct discussed earlier.

general syntax relation to flow chart

while list1
do

list2
done

while block1
check

do
block 2

done

58 | Productivity in Common Operating Systems

Unix runs the list1 and looks at the return code ($?) of the last
command in list. (If there’s only one command in the list1, then
that’s the last command.) If the return code of this last command
is TRUE, then list2 (loop body) is run. Once the keyword “done”
is reached, control returns to re-run list1 and the return code of
the last command in list1 is checked. If the return code of this
last command is FALSE, then the while loop terminates, and control
continues after the keyword “done”.

E.g. 1: Count from 1 to 12

month=1
while echo Checking limit against month ${month}

[${month} -le 12] # The test is the last command in list1
do

echo Performing action for month ${month}
month=$((${month} + 1))

done
echo Value of month outside loop is ${month}

Notes and observations

1. The last command of list1 is a test command using
the left bracket synonym.

2. The -le is a test command option for the numeric
comparison less than or equal to.

3. As Unix program variables hold strings, to perform

Control Structures - Part 2 - Loops | 59

arithmetic operations, one must use the $((..)) syntax
with dollar sign and double parentheses.

4. The formal spelling of Unix variables requires
enclosure in set braces { }. Where there is no
ambiguity, it is common practice in Unix to omit the
set braces.

5. Try running this code and see that the value of
month never exceeds 12 in the line “echo Performing
action …”.

Preamble: Redirecting input from a file

$ cat novel
It was a
dark and
stormy
$ read oneline < novel
$ echo $oneline
It was a
$ read oneline < novel
$ echo $oneline
It was a
$

Be reminded that redirection operators in Unix (<, >, etc.) apply
only to the current command. Once the command is over,
redirection is restored to the default configuration (STDIN from

60 | Productivity in Common Operating Systems

keyboard, STDOUT to screen, etc.). Thus, observe that each time
the read command is run, redirection is applied anew, and the first
line of the file is read in.

Eg 2a: How to read every line of a file (a non-functional example)

The objective is to read a file one line at a time. Here is a
newbie’s first attempt.

$ cat badwhile
while read wholeline < novel
do

something $wholeline #e.g. echo $wholeline
done
$./badwhile
It was a
It was a
It was a
It was a
...

What happened? The redirection operator applies to the
read command. Each time the read command is run,
redirection is applied anew and only the first line of the file
is ever read.

Control Structures - Part 2 - Loops | 61

How can one fix this problem?

Eg 2b: How to read every line of a file? (a functional example)

To have redirection apply to the entire duration of the
while loop and not just the read command, it is necessary
to establish redirection and associate it with the while loop.

Here is a template which you can use to read lines from a
file one-at-a-time.

while read wholeline
do

something $wholeline #e.g. echo $wholeline
done < inputfile

To make this work, one must position the redirection
operator after the command to which it should be applied.
The correct position is after the while command, in
particular the keyword done. Unix is smart enough to look
ahead for redirection when it starts executing the while
command. Any commands within the while command
which draw from STDIN (e.g. read) will draw from the
redirected file. (If you are having difficulty understanding
redirection, refer to the chapter on Redirection and Pipes.)

62 | Productivity in Common Operating Systems

Eg 3: How to process multiple command line arguments (Method 1)

Recall that the cat command will accept any number of
command line arguments like this:

cat ch1 ch2 ch3 ...

Let’s say that you want to write your own Unix script that
will accept any number of command line arguments:

mycmd parm1 parm2 ...

The key requirement here is that you will not know
beforehand how many command-line arguments the user
will supply when the user runs your program. Your
program must be flexible enough to handle zero or more
command line arguments.

Here is a template of code to solve this problem:

while [$1]
do

someprocess $1
shift

done

Explanatory notes:

1. The last command in the while list is a test
command (using the left square bracket synonym).

2. With no specific test operator (e.g. -r, etc.), the
default behaviour of the test command is to check if
the string is null. The return code ($?) is TRUE for a

Control Structures - Part 2 - Loops | 63

non-null string (something is there), and FALSE for a
null string.

3. The shift command slides all command line
parameters to the left, in this case moving the next
unprocessed command line argument into the $1
position. (The shift command also has the side-effect
of decrementing the $# variable.)

4. Once there are no more command line arguments,
the loop terminates. Note that if there were no
command line arguments to begin with ($1 is NULL),
the loop immediately terminates without entry into
the body.

Exercise: Password entry loop

Write a bash script which will continually prompt a user
to enter a password matching the control flow in the
example below. If the user enters the correct password,
grant access. If the user enters the wrong password, give
the user another try (unlimited). Avoid code duplication.

Sample dialog:

$./whilecmdlist
What is the password? happy
--- Sorry, that is not the right password.

64 | Productivity in Common Operating Systems

What is the password? access
--- Sorry, that is not the right password.
What is the password? Strawberry
Welcome to the system.
$

until command

The until command in Unix implements the General Loop construct
discussed earlier.

The syntax is identical to the while command with the only
difference that the logic of the conditional test is reversed. If the
last command in list1 is TRUE, the loop terminates.

Here’s the same explanation for the until command:
Unix runs the list1 and looks at the return code ($?) of the last

command in list. (If there’s only one command in the list1, then
that’s the last command.) If the return code of this last command
is FALSE, then list2 (loop body) is run. Once the keyword “done”
is reached, control returns to re-run list1 and the return code of
the last command in list1 is checked. If the return code of this
last command is TRUE, then the until loop terminates, and control
continues after the keyword “done”.

for command

The for command in Unix operates quite differently than what is
common in other computer languages like BASIC or Pascal. In

Control Structures - Part 2 - Loops | 65

particular, it is not a counted loop, rather one should think “iterative
substitution”.

Syntax:

for name in word ...
do

list
done

The list of words is expanded to create a list of items.
Each of these items is substituted into the variable

name one-at-a-time and the list is run.

E.g. 1: Multiple file rename problem

Consider the problem of adding a suffix to several files.

Those familiar with a DOS or Windows Power Shell
environment could use a command like this:

ren assig* assig*.bak

Unfortunately a similar command does not work in Unix:

mv assig* assig*.backup

66 | Productivity in Common Operating Systems

Nevertheless, this problem can be solved with the simple
use of a for command:

for filevar in assig*
do

mv ${filevar} ${filevar}.backup
done

Explanatory notes

1. The word list is the wildcard file specification
assig*. On expansion, for the purposes of this
example, assume that the result is three matching
files: assig1, assig2, assig3.

2. Each of these words is substituted one-at-a-time in
the loop variable filevar, and the body of the loop is
run (code between do and done).

3. When the body of the loop is run with the variable
substitutions, the effective commands generated are:

• mv assig1 assig1.backup

• mv assig2 assig2.backup

• mv assig3 assig3.backup

Additional Notes

1. There is no specific string concatenation operator
in Unix. Simply placing text adjacently achieves the
desired result. Here the string “.backup” is appended
to the “assig1”, etc.

2. As stated earlier, while the use of set braces { } is
often omitted when spelling variables, here it helps to
clarify the distinction between the variable name and

Control Structures - Part 2 - Loops | 67

surrounding text.

E.g. 2: Count the number of entries in a directory

Print the number of entries in the /etc directory.

count=0
for files in $(ls /etc)
do

count=$(($count +1))
done
echo The number of entries is $count

Explanatory notes

1. The word list consists of a command substitution
call of the ls command on the /etc directory.

2. Expansion of this word list is the names of the
entries in the /etc directory.

3. Each name is substituted into the loop variable
files.

4. The body of the loop consists of incrementing a
counter which will eventually hold the number of
entries.

5. Outside the loop, the total number of entries is
printed in an appropriate message.

68 | Productivity in Common Operating Systems

Eg 3: How to process multiple command line arguments (Method 2)

Let’s say that you want to write your own Unix script that
will accept any number of command line arguments:

mycmd parm1 parm2 …

Here is another method, this one using the for command

for cmdarg in $*
do

myprocess $cmdarg
done

Explanatory notes

1. The special variable $* expands to all command line
arguments present starting with $1.

2. Each of these words is substituted into the loop
variable cmdarg.

3. The body of the loop is run against each command
line argument (myprocess is a fictitious Unix
command or script).

4. Unlike the while command example, there is no
need for the shift command.

5. The value of $# is intact after the completion of the
for loop.

Control Structures - Part 2 - Loops | 69

70 | Productivity in Common Operating Systems

7. Quick Reference Guide

Common Notations

Here are some commonly used but easy-to-forget notations and
syntax.

Quick Reference Guide | 71

Notation Typical usage with
mini-example

Where to get
more info

single quotes (‘)

Creates literal string protecting
special characters.

grep 'Al Shaji' namelist
Shell Variables

double quotes (“)

Like single quotes but interprets
$, \ for variables.

echo "Price: $value"

$(cmd)

Command substitution. Runs cmd
and substitutes output of cmd at
position of call.

today=$(date)

man bash

set braces { }

Formal variable specification;
substrings.

echo ${alpha:3:5}

3 is offset (zero-based) and 5 is
length

double
parentheses (())

Arithmetic expression.

a=$(($a + 1)) man bash

left square
bracket [

Synonym for test command.

if [$op = MR]

Closing right bracket is needed.

man test

72 | Productivity in Common Operating Systems

Notation Typical usage with
mini-example

Where to get
more info

[[string =~ regex
]]

Checks to see if regular
expression (regex) is contained in
string

Example
[[importing =~ port]] will

return TRUE
Can be used with variables, too.
Example
[[$title =~ $word]] returns

TRUE if $word is contained within
$title

man bash

Character
classes in
regular
expressions

[abc]

Square brackets represent a single
character pattern. Thus,

r[aou]n matches ran, ron, or run.
[Pp]olish matches Polish or

polish

man regex.7

FAQs

Q1a: How do make my script executable?
Q1b: I’m getting an error message, “-bash: ./myscript: Permission

denied”
A1: You need to issue the chmod command, either:

• chmod 700 myscript

• chmod u+x myscript

Quick Reference Guide | 73

74 | Productivity in Common Operating Systems

Acknowledgements

I would first like to thank my wife, Sylvie, for her holistic support.
There are many people in the Toronto Metropolitan University

(formerly Ryerson University) community who supported me
academically, technically and editorially. While it is not possible to
mention everyone who influenced the development of this book, I
wish to acknowledge the following individuals:

Anne-Marie Brinsmead, Maryam Davoudpour, Alex Ferworn, Greg
Gay, Shannon Koumphol, Ann Ludbrook, Allen Pader, Mehrdad
Tirandazian, Muhammad Waqas, Sally Wilson, and Leonora Zefi.

Without their support and endorsement, this book would not
have been created.

Acknowledgements | 75

	Introduction
	The Hierarchical File System
	Hierarchical File System

	Common Unix Commands
	Input and Output: Redirection and Pipes
	Filters
	Redirection
	Pipes
	 Making your script executable

	Shell Variables, Quotes, Command Substitution
	Shell Variables
	read
	Quotes
	Command substitution

	Control Structures - Part 1 - branching
	test
	Control Structures

	Control Structures - Part 2 - Loops
	Computer Science Loop Concepts
	Loops in Unix

	Quick Reference Guide
	Common Notations
	FAQs

	Acknowledgements

