
Web Accessibility for Developers

Web Accessibility for
Developers

Essential Skills for Web Developers

DIGITAL EDUCATION STRATEGIES, THE
CHANG SCHOOL

GREG GAY AND IGOR KARASYOV

THE CHANG SCHOOL, RYERSON UNIVERSITY

TORONTO

Web Accessibility for Developers by Ryerson University, The Chang School is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License, except
where otherwise noted.

Contents

Introduction 1

Getting the Most Out of This Book 1

Who Should Read This Book 1

Accessibility Statement 2

Background

Types of Disabilities and Barriers 5

Why Learn About Accessible Web Development 14

AODA Background 18

About WCAG and WAI-ARIA 22

1. Introduction

Objectives and Activities 29

Submitting Coding Assignments and Using GitHub 30

Activity 1: How to Submit Assignments 37

Introduction to the jQuery Plugin 39

Other WAI-ARIA Libraries 40

ChromeVox Screen Reader Install and Setup 42

Activity 2: Set Up and Use ChromeVox 48

WAI-ARIA and HTML 5 51

Self-Test 1 52

2. Introduction to WAI-ARIA

Objectives and Activities 55

What is WAI-ARIA? 56

Roles, States, and Properties 60

Static vs. Dynamic WAI-ARIA 64

Browser and Screen Reader Support for WAI-ARIA 70

Graceful Degradation vs. Progressive Enhancement 71

Validating WAI-ARIA 75

WAI-ARIA Taxonomy 77

Activity 3: WAI-ARIA Scavenger Hunt 78

Self-Test 2 81

3. Basic WAI-ARIA

Objectives and Activities 85

WAI-ARIA Landmarks 86

Common Static WAI-ARIA 91

WAI-ARIA Alert and Message Dialogs 93

Using Tabindex 97

Keyboard Interaction 99

Application and Presentation Roles 103

Live Regions 110

Activity 4: WAI-ARIA Landmarks and Alerts 114

Self-Test 3 117

4. Interactive WAI-ARIA (Basic)

Objectives and Activities 121

Toggle Buttons (Activity Example) 122

Suggestion Boxes 133

Activity 5: Accessible Suggestion Box 144

Tooltips 146

Activity 6: Accessible Tooltips 153

Progress Bars 155

Activity 7: Accessible Progress Bar 165

5. Interactive WAI-ARIA (Intermediate)

Objectives and Activities 169

Sliders 170

Activity 8: Accessible Slider 180

Accordions 182

Activity 9: Accessible Accordion 194

Tab Panels 196

Activity 10: Accessible Tab Panel 207

Carousels 209

Activity 11: Accessible Carousel 217

6. Interactive WAI-ARIA (Advanced)

Objectives and Activities 221

Menu Bars 222

Activity 12: Accessible Menu Bar 236

Tree Menus 238

Activity 13: Accessible Tree Navigation 257

Sortable Lists 259

Activity 14: Accessible Sortable List 269

Book Recap 271

Web Accessibility for Developers Toolkit 277

Answer Key: Self-Tests 279

Acknowledgements 286

Introduction

Learning Outcomes

Welcome to Web Accessibility for Developers. We are glad that you

are here and are taking the time to learn some very important,

marketable developer skills!

By the time you complete this book, you should be able to:

• Test web interactivity with a screen reader to ensure

accessibility.

• Identify the differences between static and dynamic WAI-ARIA.

• Describe both graceful degradation and progressive

enhancement development methods.

• State when and when not to use WAI-ARIA.

• Explain the limitations of WAI-ARIA.

• Apply WAI-ARIA landmarks and live regions to web content.

• Create accessible progress bars, suggestion boxes, and tooltips

with WAI-ARIA.

• Build accessible sliders, accordions, tab panels, and carousels

with WAI-ARIA.

• Implement effective design patterns for accessible menu bars,

tree menus, and sortable lists with WAI-ARIA.

Suggested Prerequisites

This book is intended for web developers.

To get the most out of this book, you should have the following

prerequisite knowledge:

Introduction | 1

• JavaScript: You should have a functional understanding of the

JavaScript scripting language and be familiar with using jQuery

and jQuery plugins. Though you can follow along with basic

knowledge of JavaScript and jQuery, it will be easier to

understand if you are comfortable writing (or, at least, copying

and pasting) JavaScript code and making adjustments.

• HTML: You should have at least a functional understanding of

HTML 5. Though most of the HTML in this book will be

provided, you’ll need to understand how it is used to produce

the widgets you’ll be working on.

• Git Version Control: We strongly recommend a GitHub

account (and a basic understanding of how it is used) in order

to participate in the activities found in this book. Details will be

provided in the book if you need to set up an account, and

basic Git commands will be covered.

Suggested Technology

You will need the following applications to complete the activities in

this book:

• ChromeVox Screen Reader: Required for testing assignment

submissions prior to submitting.

• FireFox Developer Edition: Optional, but includes the FireBug

Developer Tools, which are more helpful for debugging than

the default developer tools included with various browsers.

• Git: (Optional) Though you can edit activity files and send

them to a web server, you’ll be better off installing Git or a Git

Client and working from your own local development

environment.

• Plain Text Editor: Required for editing HTML and JavaScript,

which is much easier with a good, colour-coded text editor,

2 | Introduction

such as Visual Studio Code, Sublime Text, or Atom.

Suggested Readings

Suggested Reading:

• Accessible Rich Internet Applications (WAI-ARIA) 1.1

• WAI-ARIA Authoring Practices 1.1

You might also look ahead to the next version by reviewing WAI-

ARIA 1.2, currently available as an editor’s draft.

These readings are more references than they are readings. At

a minimum, scan through these documents to understand what

they contain and refer back to them when you encounter scenarios

where WAI-ARIA could or should be used.

Disclaimer

The information presented in this book is for instructional purposes

only and should not be construed as legal advice on any particular

issue, including compliance with relevant laws. We specifically

disclaim any liability for any loss or damage any participant may

suffer as a result of the information contained. Furthermore,

successful completion of activities in this book does not result in

formal accreditation or recognition within or for any given field or

purpose.

Introduction | 3

Getting the Most Out of This
Book

We highly recommend reading this book online. While the book is

available for download in various formats (ePub, HTML, and PDF),

the interactive elements in the readings and activities are best

viewed here in Pressbooks.

Throughout the book, you’ll see the various coloured boxes

described below to help you organize how you engage with the

content.

Toolkit

Throughout the book, we identify items that should be added to

your WAI-ARIA Developer Toolkit, which you will collect during

the course of the book. These items will include links to resource

documents and online tools used during development activities, as

well as software or browser plugins that you may need to install.

These will be identified in a green Toolkit box like the following:

Toolkit: Provides useful tools and resources for your future

reference.

Key Points

Important or notable information is highlighted and labelled in Key

Point boxes such as the one that follows. These will include “must

Getting the Most Out of This Book | 1

know” information, as well as less obvious considerations and

interesting points.

Key Point: Essential information and interesting points.

Try This

Brief activities are highlighted in in the Try This boxes.

These activities are designed to get you thinking or give you

firsthand experience with something you’ve just read about.

Try This: Usually a quick activity to help you understand a

topic being discussed.

Suggested Reading

Links listed in these Suggested Reading boxes act more as

references than readings. At a minimum, scan through these

documents to understand what they contain and refer back to

them when you encounter scenarios where WAI-ARIA could or

should be used.

Suggested Reading: Links to various web resources for

optional reading on the topics being discussed.

2 | Getting the Most Out of This Book

Activity Elements

When the widget coding activities are introduced in Chapter 4, each

of the elements in the example activity are described using the

Activity Element box.

Activity Element: A brief description of each section of an

activity.

Self-Tests

The first few chapters include Self-Tests, which will help reinforce

key topics discussed in a unit. For questions that have multiple

answers, be sure to select all the correct answers and none

of incorrect answers in order for the question to be marked

“correct.” Multiple answer questions can be challenging, and they

typically require a thorough understanding of the topic in question

to answer correctly. Questions will only reference topics covered

in the book itself. They will not test your knowledge of content

referred to on external resource sites that may be linked from the

book.

Try This: Skip ahead to the end of the book and read through

the Book Recap for a high-level summary of the topics

covered in the book.

Getting the Most Out of This Book | 3

Who Should Read This Book

Web developers should read this book.
As much as we would like to teach WAI-ARIA to everyone —

including how it is used to make web interactivity accessible to

people with disabilities — the topic is very much a technical one.

While you do not necessarily need to be a web developer to

understand where and when WAI-ARIA should be used, in order to

implement it, you must be able to write code or, at a very minimum,

be able to read code and understand what it is doing.

Non–web developers can still benefit from the information

provided in this book, but they will likely find the activities very

challenging without the prerequisite background knowledge. This

background knowledge is beyond the scope of this book, so we

will not be able to help with basic HTML formatting or JavaScript

programming. The focus here is on using WAI-ARIA, not on using

HTML and JavaScript.

If you are not currently interested in code details but still want

to learn about web accessibility or if you want to go beyond coding,

we recommend two ebooks that are based on our less technically

focused courses on the same subject.

Suggested Reading:

• Digital Accessibility as a Business Practice

• Professional Web Accessibility Auditing Made Easy

Who Should Read This Book | 1

Accessibility Statement

Though we attempt to make all elements of the book conform with

international accessibility guidelines, we must acknowledge a few

accessibility issues that are out of our control or are done on

purpose to demonstrate barriers.

• Some external resources may not conform with accessibility

guidelines.

• Though possible to navigate the JSFiddle code samples

embedded in the book, JSFiddle itself is a complex interface

that can be difficult to navigate with a screen reader. Working

in JSFiddle is not a requirement for the book but has been

provided as a place to experiment with the code samples

provided.

• The rendered JSFiddle embedded examples found under the

result tab are intentionally made inaccessible.

• Prior to each embedded JSFiddle is a hidden bypass link to skip

over the fiddle iframe.

• The JSFiddle interface will extend beyond the width of a mobile

screen and, thus, require scrolling.

• Throughout the widget descriptions in chapters 4 to 6, we

present code examples embedded from PasteBin. Though the

code itself is readable with a screen reader, the highlighted

solutions they contain are not distinguishable from other code

in these samples when listening with a screen reader. Where

possible, we have described the changes in the text preceding

these code samples.

• The GitHub website, which contains the activity files used with

activities in the book and is relatively accessible, can be

difficult to navigate and use with a screen reader.

• Third-party video content may not be captioned or may be

captioned poorly.

2 | Accessibility Statement

BACKGROUND

Background | 3

Types of Disabilities and
Barriers

In order to understand why web accessibility is necessary, it is

helpful to have a basic understanding of the range of disabilities

and their related barriers with respect to the consumption of web

content.

Key Point: Those who have taken our other courses will have

encountered this content already. Read again or skim for a

refresher.

Not all people with disabilities encounter barriers on the Web, and

those with different types of disabilities encounter different types
of barriers. For instance, if a person is in a wheelchair they may

encounter no barriers at all in web content. A person who is blind

will experience different barriers than a person with limited vision.

Different types of disabilities and some of their commonly

associated barriers are described here.

Watch the following video to see how students with disabilities

experience the Internet.

Video: Experiences of Students with Disabilities (1:59)

Types of Disabilities and Barriers | 5

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=813

© Jared Smith. Released under the terms of a Standard YouTube License. All rights

reserved.

In this video, David Berman talks about types of disabilities and

their associated barriers.

Video: Web Accessibility Matters: Difficulties and Technologies:
Avoiding Tradeoffs (9:52)

6 | Types of Disabilities and Barriers

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=813

© davidbermancom. Released under the terms of a Standard YouTube License. All rights

reserved.

People Who Are Blind

People who are blind tend to face many barriers in web content,

given the visual nature of the Web. They will often use a screen

reader to access their computer or device and may use a refreshable

Braille display to convert text to Braille.

Common barriers for this group include:

• Visual content that has no text alternative

• Functional elements that cannot be controlled with a keyboard

• Overly complex or excessive amounts of content

Types of Disabilities and Barriers | 7

• Inability to navigate within a page of content

• Content that is not structured

• Inconsistent navigation

• Time limits (insufficient time to complete tasks)

• Unexpected actions (e.g., redirect when an element receives

focus)

• Multimedia without audio description

For a quick look at how a person who is blind might use a screen

reader like JAWS to navigate the Web, watch the following video.

Video: Accessing the web using screen reading software (3:07)

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=813

© rscnescotland. Released under the terms of a Standard YouTube License. All rights

reserved.

8 | Types of Disabilities and Barriers

People with Low Vision

People with low vision are often able to see web content if it is

magnified. They may use a screen magnification program to

increase the size and contrast of the content to make it more visible.

They are less likely to use a screen reader than a person who is

blind, though, in some cases they will. People with low vision may

rely on the magnification or text customization features in their

web browser, or they may install other magnification or text reading

software.

Common barriers for this group include:

• Content sized with absolute measures so is not resizable

• Inconsistent navigation

• Images of text that degrade or pixelate when magnified

• Low contrast (inability to distinguish text from background)

• Time limits (insufficient time to complete tasks)

• Unexpected actions (e.g., redirect when an element receives

focus)

See the following video for a description of some of the common

barriers for people with low vision.

Video: Creating an accessible web (AD) (4:39)

Types of Disabilities and Barriers | 9

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=813

© Centre for Inclusive Design. Released under the terms of a Standard YouTube License.

All rights reserved.

People Who Are Deaf or Hard of Hearing

For most people who are deaf the greatest barrier on the Web

is audio content that is presented without text-based alternatives.

They encounter relatively few barriers on the Web otherwise. Those

who are deaf and blind will face many more barriers, including those

described for people who are blind. For those who communicate

with American Sign Language (ASL) or other sign languages, such

as langue de Signes Quebecoise (LSQ), the written language of a

website may produce barriers similar to those faced when reading

in a second language.

10 | Types of Disabilities and Barriers

Common barriers for this group include:

• Audio without a transcript

• Multimedia without captions or a transcript

• Lack of ASL interpretation (for ASL/Deaf community)

People with Mobility-Related Disabilities

Mobility-related disabilities are quite varied. As mentioned earlier,

one could be limited to a wheelchair for getting around and face

no significant barriers in web content. Those who have limited use

of their hands or who have fine motor impairments that limit their

ability to target elements in web content with a mouse pointer

may not use a mouse at all. Instead, they might rely on a keyboard

or perhaps their voice to control movement through web content

along with switches to control mouse clicks.

Common barriers for this group include:

• Clickable areas that are too small

• Functional elements that cannot be controlled with a keyboard

• Time limits (insufficient time to complete tasks)

People with Some Types of Learning or Cognitive
Disabilities

Learning and cognitive-related disabilities can be as varied as

mobility-related disabilities, perhaps more so. These disabilities can

range from a mild reading-related disability to very severe cognitive

impairments that may result in limited use of language and difficulty

processing complex information. For most of the disabilities in this

Types of Disabilities and Barriers | 11

range, there are some common barriers and others that only affect

those with more severe cognitive disabilities.

Common barriers for this group include:

• Use of overly complex/advanced language

• Inconsistent navigation

• Overly complex or excessive amounts of content

• Time limits (insufficient time to complete tasks)

• Unstructured content (no visible headings, sections, topics,

etc.)

• Unexpected actions (e.g., redirect when an element receives

focus)

More specific disability-related issues include:

• Reading: text justification (inconsistent spacing between

words)

• Reading: images of text (not readable with a text reader)

• Visual: visual content with no text description

• Math: images of math equations (not readable with a math

reader)

Everyone

While we generally think of barriers in terms of access for people

with disabilities, there are some barriers that impact all types of

users, though these are often thought of in terms of usability.

Usability and accessibility go hand-in-hand. Adding accessibility

features improves usability for others. Many people, including those

who do not consider themselves to have a specific disability (such as

those over the age of 50) may find themselves experiencing typical

age-related loss of sight, hearing, or cognitive ability. Those with

varying levels of colour blindness may also fall into this group.

12 | Types of Disabilities and Barriers

Some of these usability issues include:

• Link text that does not describe the destination or function of

the link

• Overly complex content

• Inconsistent navigation

• Low contrast

• Unstructured content

To learn more about disabilities and associated barriers, read the

following:

Suggested Reading: How People with Disabilities Use the

Web

Types of Disabilities and Barriers | 13

Why Learn About Accessible
Web Development

Key Point: Those who have taken our other courses, or read

our other books, will have read through this content already.

Read again or skim for a refresher.

Curb Cuts

Curb cuts are a great example of universal design. Originally, curb

cuts were added to sidewalks to accommodate those in wheelchairs,

so they could access the road from the sidewalk and vice versa.

However, curb cuts are helpful for many people — not just those

in wheelchairs — including a person pushing a baby stroller, a

cyclist, or an elderly person using a walker. The addition of a smooth

gradient ramp allows anyone, who may have difficulty stepping or

who may be pushing something, to smoothly enter the sidewalk via

a ramp, rather than having to climb a curb. Although curb cuts were

initially designed to help those in wheelchairs, they have come to

benefit many more people.

From a web accessibility perspective, most of the accessibility

features you might add to a website will have that so-called “curb

cut effect.” For example, the text description one might include

with an image to make the image’s meaning accessible to a person

who is blind also makes it possible for search engines to index the

image and make it searchable. It allows a person on a slow Internet

connection to turn images off and still get the same information. Or,

it allows a person using a text-based browser (on a cell phone for

instance) to access the same information as those using a typical

14 | Why Learn About Accessible
Web Development

visual browser. Virtually every such feature that might be put in

place in web content to accommodate people with disabilities will

improve access and usability for everyone else.

Key Point: Think of accommodations to improve web

accessibility for people with disabilities as “curb cuts.” These

accommodations will very likely improve usability for

everyone.

The Business Case for Web Accessibility

Video: The Business Case for Accessibility (3:29)

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=818

Why Learn About Accessible Web Development | 15

Karl Groves wrote an interesting series of articles in 2011 and 2012

that looked at the reality of business arguments for web

accessibility. He points out that any argument needs to answer

affirmatively at least one of the following questions:

1. Will it make us money?

2. Will it save us money?

3. Will it reduce risk?

He outlines a range of potential arguments for accessibility:

• Improved search engine optimization: Customers will be able

to find your site more easily because search engines can index

it more effectively.

• Improved usability: Customers will have a more satisfying

experience, thus spend more on or return more often to your

site.

• Reduced website costs: Developing to standard reduces bugs

and interoperability issues, reducing development costs and

problems integrating with other systems.

• People with disabilities have buying power: They won’t spend

if they have difficulty accessing your site; they will go to the

competition that does place importance on accessibility.

• Reduced resource utilization: Building to standard reduces

use of resources.

• Support for low bandwidth: If your site takes too long to load,

people will go elsewhere.

• Social responsibility: Customers will come if they see you

doing good for the world and you are thinking of people with

disabilities as full citizens.

• Support for aging populations: Aging populations also have

money to spend and will come to your site over the less

accessible, less usable competition.

• Reduced legal risk: You may be sued if you prevent equal

access for citizens/customers or discriminate against people

16 | Why Learn About Accessible Web Development

with disabilities.

What accessibility really boils down to is “quality of work,” as Groves

states. When approaching web accessibility, you may be better off

not thinking so much in terms of reducing the risk of being sued or

losing customers because your site takes too long to load. Rather, if

the work that you do is quality work, then the website you present

to your potential customers is a quality website.

If you’d like to learn more about business cases, here are a few

references:

Suggested Reading:

• Developing a Web Accessibility Business Case for Your

Organization (W3C)

• Chasing the Web Accessibility Business Case (Karl

Groves, 2012), Part 1

• Chasing the Web Accessibility Business Case (Karl

Groves, 2012), Part 2

• Chasing the Web Accessibility Business Case (Karl

Groves, 2012), Conclusion

• 2 Seconds as the New Threshold of Acceptability for

eCommerce Web Page Response Times (Akamai, 2009)

• Releasing Constraints: The Impacts of Increased

Accessibility on Ontario’s Economy (Summary)

• Releasing Constraints: Projecting the Economic Impacts

of Increased Accessibility in Ontario (Full Report)

Why Learn About Accessible Web Development | 17

AODA Background

Video: AODA Background (3:05)

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=820

For those reading this book from Ontario, Canada, we’ll provide

occasional references to the Accessibility for Ontarians with

Disabilities Act (AODA). For those reading this book from outside

Ontario, you might compare AODA’s web accessibility requirements

with those in your local area. They will be similar in many cases and

likely based on the W3C WCAG 2.0 Guidelines. The goal in Ontario

is for all obligated organizations to meet the Level AA accessibility

requirements of WCAG 2.0 by 2021, which, ultimately, is the goal of

most international jurisdictions.

The AODA provided the motivation to create this book. All

18 | AODA Background

businesses and organizations in Ontario with more than 50

employees (and all public sector organizations) are now required

by law to make their websites accessible to people with disabilities

(currently at WCAG 2.0 Level A). Many businesses still don’t know

what needs to be done in order to comply with the new rules. This

book hopes to fill some of that need.

The AODA has its roots in the Ontario Human Rights Code,

introduced in 1990. It essentially made it illegal to discriminate

based on disability (among other forms of discrimination). The

development of the AODA began in earnest in 1994 with the

emergence of the Ontarians with Disabilities Act (ODA). Its aim

was to legislate the removal and prevention of barriers that inhibit

people with disabilities from participating as full members of

society, improving access to employment, goods and services, and

facilities. The act was secured as law in 2001.

With the election of a new government in 2003, the movement

that brought us the ODA sought to strengthen the legislation. The

Accessibility Standards Advisory Council was established and the

AODA was passed as law in 2005, and, in July 2011, the Integrated

Accessibility Standards Regulation (IASR) brought together the five

standards of the AODA covering Information and Communication,

Employment, Transportation, and Design of Public Spaces, in

addition to the original Customer Service standard.

The AODA sets out to make Ontario fully accessible by 2025, with

an incremental roll-out of accessibility requirements over a period

of 20 years. These requirements span a whole range of accessibility

considerations — from physical spaces to customer service, the

Web, and much more.

Our focus here is on access to the Web. The timeline set out in

the AODA requires government and large organizations to remove

all barriers in web content between 2012 and 2021. The timeline

for these requirements is outlined in the table below. Any new or

significantly updated information posted to the Web must comply

with the given level of accessibility by the given date. This includes

AODA Background | 19

both Internet and Intranet sites. Any content developed prior to

January 1, 2012, is exempt.

Level A Level AA

Government • January 1, 2012 (except live
captions and audio description)

• January 1,
2016
(except live
captions
and audio
description)

• January 1,
2020
(including
live
captions
and audio
description)

Designated
Organizations*

• Beginning January 1, 2014, new
websites and significantly
refreshed websites must meet
Level A (except live captions and
audio description)

• January 1,
2021
(except live
captions
and audio
description)

*Designated organizations means every municipality and every person
or organization as outlined in the Public Service of Ontario Act 2006 Reg.
146/10, or private companies or organizations with 50 or more
employees, in Ontario.

For more about the AODA you can review the following references:

Suggested Reading:

◦ History of the Ontarians with Disabilities Act.(ODA)

(David Lepofsky)

◦ Integrated Accessibility Standards Regulation

20 | AODA Background

◦ Reg. 146/10: Public Bodies and Commission Public

Bodies – Definitions

AODA Background | 21

About WCAG and
WAI-ARIA

Before we get into the main part of the book, some background

information on the relevant W3C specifications will help provide

some context for why developers should learn to use WAI-ARIA

when they are developing custom interactivity for the Web.

WCAG

The Web Content Accessibility Guidelines (i.e., WCAG 2.0 and the

recent WCAG 2.1, pronounced wuh-kag) is the primary specification

adopted around the world and describes how web content should

be created so it will be accessible to people with disabilities. WAI-

ARIA can help developers create content that conforms with

recommendations in WCAG. WCAG is covered in more detail in

another book, so we will just provide a basic introduction here. For

those who are not already familiar with WCAG, follow the link to the

W3C WCAG Specification for details.

Suggested Reading:

• The Web Content Accessibility Guidelines (WCAG 2.0)

• The Web Content Accessibility Guidelines (WCAG 2.1)

WCAG revolves around four principles that help group guidelines

22 | About WCAG and WAI-ARIA

with common characteristics. The acronym POUR can be used to

remember the principles, described below.

Content must be:

1. Perceivable: It must be possible to perceive web content

through multiple senses so that those who have lost a sense

are able to perceive the content through another sense. Some

good examples of making content perceivable are alternative

text with images, so people who are blind can perceive images,

and captions with audio or video, so people who are deaf are

able to perceive sounds and speech.

2. Operable: Content needs to operate with both a mouse and a

keyboard. There are many people who are unable to use a

mouse effectively or not at all. When content is not keyboard

operable, most people who are blind (among others) will

experience barriers. Some good examples include using

onKeyPress alongside onClick for JavaScript, and using both

:hover and :focus in CSS so effects are possible with both

mouse and keyboard.

3. Understandable: Content needs to be understood by a range

of people, which includes people with cognitive disabilities,

sensory disabilities, people reading in a second language, and

even typical able users. Some good examples include making

link text meaningful (“click here” tells one nothing about the

link’s destination) and consistent navigation elements (so users

only have to learn the navigation structure of a website once).

4. Robust: Content needs to work across multiple platforms, and

it needs to continue to work into the future as technology

evolves. This generally means developing content based on

standards. And, when non-standard uses of HTML etc. are

provided, a standard version is available as a backup. Some

uses of WAI-ARIA fall into this category of guidelines.

WCAG also introduces conformance levels. Conformance levels can

be thought of in terms of their importance toward removing

About WCAG and WAI-ARIA | 23

barriers with Level A being the most important. It is helpful to think

of levels as things you must do, should do, and could do.

• Level A: These issues must be resolved or some group will not

be able to access the content. The issues at this level represent

significant barriers that may not be overcome with

workarounds. An example of a Level A barrier is missing

alternative text to describe an image. There is little a person

who is blind can do on their own to understand the content of

an image without a text description.

• Level AA: These issues should be resolved or some group will

find it difficult to access or use the content. These issues can

often be circumvented with some effort but will make using or

understanding web content more effortful. An example of a

Level AA barrier is not being able to follow the focus of the

cursor when navigating through content with a keyboard. For a

person with low vision navigating with a keyboard, or a fully

able keyboard user for that matter, navigating through content

can be very difficult if he or she cannot see where the cursor is

located and is unable to tell when to press the Enter key to

activate a link or button.

• Level AAA: These issues could be resolved to improve usability

for all groups. Web content may be technically accessible, but

usability can be improved by resolving these issues. An

example of a Level AAA barrier would be presenting acronyms

or abbreviations without providing their full wording. For a

person who is blind, an acronym pronounced by a screen

reader may sound like gibberish. For a fully able user who is

not familiar with a short form, an acronym or abbreviation may

have no useful meaning, at least not without having to search

out the meaning elsewhere.

Level AA is the generally accepted level of conformance most
websites should aim for, with perhaps a few Level AAA items

addressed. Very few websites will comply at Level AAA, apart from

24 | About WCAG and WAI-ARIA

the most basic of sites. Level AAA compliance is generally

unattainable, and in some cases undesirable.

The following suggested readings provide links to additional

WCAG related resources.

Suggested Reading:

• Understanding WCAG 2.0 (see Success Criteria and

Techniques)

• How to Meet WCAG 2

WAI-ARIA

This book focuses on the WAI-ARIA specification and how it is

used to ensure interactive web content is accessible to people with

disabilities. The acronyms stand for Web Accessibility Initiative,

the W3C subgroup that developed the specification, and Accessible
Rich Internet Applications, the specification itself. It is typically

referred to as WAI-ARIA, rather than ARIA, to distinguish it from

other uses of the acronym. WAI-ARIA can be used to help

developers create widgets, applications, and web interactivity in

general that meet WCAG recommendations.

The WAI-ARIA specification was initially released as a

recommendation in March 2014 (WAI-ARIA 1.0). WAI-ARIA 1.1 was

released in December 2017, and is the current stable version, with

WAI-ARIA 1.2 in the works, available as an editor’s draft.

WAI-ARIA itself is not a solution on its own for making interactive

web content accessible. It is generally used with JavaScript, which

dynamically injects WAI-ARIA attributes into HTML to provide

semantics that are recognized by assistive technologies and

About WCAG and WAI-ARIA | 25

understandable by end users. For example, if a series of nested lists

are assembled as a menu, WAI-ARIA menu attributes can be added

to replace the list semantics with menu semantics.

For now introduce yourself to WAI-ARIA, if you are not already

familiar, by scanning over the specification to develop a general

understanding of why it is needed, how it is used, and when to use it.

We will go into much more detail as we proceed through the book.

Suggested Reading:

• Accessible Rich Internet Application (WAI-ARIA 1.1)

• WAI-ARIA 1.2 Editor’s Draft

26 | About WCAG and WAI-ARIA

1. INTRODUCTION

1. Introduction | 27

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Save a local copy of the activity files

• If you are using this book as part of a course, get set up to

submit assignments, on GitHub, raw.githack.com, or your own

web server (optional)

Activities

• Set up a site for future activity assignments and submit a URL

to it (optional)

Objectives and Activities | 29

Submitting Coding
Assignments and Using
GitHub

Note: If you are using this book as part of a course, please read on.

Otherwise, submitting coding assignments is not required.

Most assignments in this book are various inaccessible web page

widgets that we will ask you to make accessible by rewriting their

code (HTML, CSS, or JavaScript). If you are using this book as part

of a course, you will need the link to a live web page with your

solution. Before the code is reviewed, the page will be checked for

accessibility (using ChromeVox and other tools).

It is your decision where you want to host the pages that you

will submit for review. If you have your own domain and server

space, you can upload completed assignments there and submit

the URL. Another option is to submit the URL of a file on GitHub

to GitHack (https://raw.githack.com), then submit the URL to the

output it generates as your assignment submission.

Feel free to download the activity files from our repository now,

or if you are going to use GitHub, keep reading for instructions how

to fork it to your own account.

If you don’t have a website, we recommend using GitHub as your

platform for submitting assignments. Below we describe GitHub and

GitHub Pages. If you are familiar with using GitHub or you have your

own web server, you can skip the rest of this page, or just scan it.

30 | Submitting Coding Assignments
and Using GitHub

Set Up a GitHub Account

If you do not already have one, you should create a GitHub account.

For any developer, it is an invaluable tool for sharing and

collaborating on code development. A GitHub account is free.

Though you can download the activity files from GitHub, then unzip

them and work from a local directory on your hard drive, we

recommend creating a fork of the activity files to your own account,

and cloning your fork into a local directory. Follow the link below to

set up an account, then read on.

Toolkit: Join GitHub

Set Up a Local Git Environment

Depending on the operating system you are using, there are specific

versions of Git for each platform. You may choose to use a Git client,

or you may choose to use Git from the command line. Here we will

present command line options. If you choose to use a client, see

the documentation associated with the client for details on cloning,

committing, pulling, and pushing.

If you are going to use a client, instead of working from a

command line, for Windows and Mac users, we suggest installing

SourceTree. GitHub Desktop is a good alternative if you prefer to

use an Open Source client. Feel free to choose another Git client if

you like.

Toolkit: Download SourceTree, or GitHub Desktop if you

need a desktop Git client application.

For Linux users you can use your system’s package manager to

Submitting Coding Assignments and Using GitHub | 31

install Git for command line use. On Ubuntu for instance, at the

command prompt you can run apt-get as the root user to install

Git:

#> sudo apt-get install git

Suggested Reading: For more about Git setup on Ubuntu see

the tutorial on DigitalOcean:

If you are using another Linux distribution, use Google to find

details on installing Git on your version of Linux.

Suggested Reading: For details on installing Git, see the

GitBook.

Assignment Submissions via GitHub

Most of the assignments for this book require submitting a URL to

a publicly accessible version of the widgets that are the focus of the

book activities.

If you need a place to post your activity assignments, GitHub

Pages can be a good option. Or, you may just prefer to use GitHub

Pages to organize your files, so they are not cluttering your web

server. You will create a fork of the activity files (learnaria.github.io),

rename the repository to create your own version, and either

upload it to a site of your choosing, or use GitHub Pages. The GitHub

Pages option is outlined here.

Suggested Reading: Using GitHub Pages.

If you choose to use GitHub Pages, follow these steps to create a

copy of the files under your own GitHub account.

32 | Submitting Coding Assignments and Using GitHub

1. Logged into GitHub, find your way to the activity files, and

fork that repository. The fork button is at the top right of

the GitHub screen while viewing a repository. This creates

a copy of the repository under your own GitHub account

where you will work from.

2. After you have forked the activity files, go into the settings

for that repository and change the name from

learnaria.github.io to [username].github.io, where

username is your GitHub account username. This will

automatically create your GitHub Pages website at

https://[username].github.io.

3. Now you will want to create a clone of your forked activity

files repository on your computer, through which you will

do your work. From the command line issue the following

command to create a clone of the forked version of the

activity files you created, where [username] is your GitHub

account username. You can also copy the https link from a

field that opens when you click on the “Clone or

download” button in your repo.#>git clone
4. If you are using SourceTree, click on “+ New Repository”

and choose “Clone from URL” and enter the above URL

into the “Source URL” field. Set the “Destination Path” to

your preferred work directory.

Suggested Reading: Cloning a repository.

You should now have a copy of the activity files available locally that

you can edit and commit back as your assignment updates, which

become part of your GitHub Pages website.

Note that it can take a few seconds or a minute for changes

committed to your GitHub Pages repository to actually show up on

the website.

Submitting Coding Assignments and Using GitHub | 33

Figure: A
screenshot of
the GitHub
Pages
settings

If You Already Have a GitHub Pages Site

To add the files to an existing GitHub Pages site, open the settings

for the forked repository you created. In the GitHub Pages section

shown in the screenshot below, choose the Source (typically, the

master branch) and click Save. This will create a subdirectory under

your existing GitHub Pages site with the name of the forked

repository (i.e., learnaria.github.io).

You may want to rename the repository to something shorter

(e.g., learnaria) before enabling it in GitHub Pages. This would

produce a URL to the activity files something like:

https://[username].github.io/learnaria/

Basic Git Commands

You do not need to be an expert Git user, but you should know a few

basic commands if you are working from a command prompt. The

commands you’ll likely use are the following

git status (displays a list of changed and untracked files)

git add [filename] (prepares a files for committing)

34 | Submitting Coding Assignments and Using GitHub

git commit -m “[message]” (describe the nature of the

commit)

git push [origin master] (sends the committed change to

your GitHub repository master branch)

git diff [filename] (shows the changes in a file)

Of course there are many other potential commands, but these are

the most common. If you are using a Git client, like SourceTree,

these commands will be clickable in the UI buttons and menus. For

more about using Git from the command line, see the Git Book.

Suggested Reading: The Git Book.

What the Activity Files Look Like

Here is what to expect once you have successfully set up the activity

files. You’ll note that the widgets are inaccessible. Your job

throughout the book will be to fix the accessibility of each widget.

Submitting Coding Assignments and Using GitHub | 35

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=172

36 | Submitting Coding Assignments and Using GitHub

Activity 1: How to Submit
Assignments

How to Submit Assignments

If you are submitting assignments, the first task in the book is to

get setup to submit assignments. This can be done through GitHub

Pages (recommended), another public location on the Web, or

on GitHack.

Refer back to Using GitHub in this Book for details on getting set

up with GitHub Pages.

Alternatives to GitHub Pages

• If you choose not to use GitHub Pages for your assignments,

submit the URL to the index.html file of your copy of the

activity files at an alternate location where you have set up

your files.

• Or, submit the URL to the index.html file of your GitHub

repository generated through raw.githack.com.

Activity 1: How to Submit
Assignments | 37

Requirements

If you are taking a course that uses this textbook, your instructor

will provide information on how and where to submit the URLs to

your various assignment submissions.

Grading Rubric

Criteria Points

URL to Course Files:
URL submitted to your copy of all the course files either in
GitHub Pages or on a web server of your choosing.

10.0
pts

Total Points: 10.0

38 | Activity 1: How to Submit Assignments

Introduction to the jQuery
Plugin

Though we have chosen to focus the book around jQuery, much

of what you’ll learn in this book will be applicable to JavaScript

in general and to other JavaScript frameworks you may be using

in your work. Much of the effort in the book will be on creating

device independent code (works with keyboard and mouse) and

using script to inject WAI-ARIA into HTML as needed to dynamically

manage roles, states, and properties of various interactive widgets

and applications you’ll be introduced to.

Throughout the book you will be building a jQuery-ARIA plugin.

We will first provide some background in the first few chapters,

then introduce static WAI-ARIA, then move into building the plugin

in Chapter 4 up until the end of the book.

As you go through the book you will be building pieces of the

library one widget at a time. At the end of the book, when you have

submitted all of the assignments, we will provide you with a link to

the full library that you can continue to use and build upon.

Disclaimer

When creating this book and the jQuery plugin, we have optimized

plugin widgets to work with ChromeVox, the screen reader you’ll

be introduced to shortly. You may find some inconsistencies in

functionality and presentation when using NVDA or JAWS (i.e., other

screen readers). Compatibility or limitations across screen readers

will be discussed throughout the activities within the book.

Introduction to the jQuery
Plugin | 39

Other WAI-ARIA Libraries

Though we’ll focus on using the open source WAI-ARIA jQuery

library we have created for this book, there are a couple other

resources you can review that provide similar capabilities.

Toolkit: jQuery UI Accessibility Enhancements. Developed by

Hans Hillen at the Paciello Group.

Toolkit: Accessible MooTools Widgets. Developed by

Fraunhofer as part of an AEGIS project (no longer available

through the creator).

The above libraries have been pulled apart and set up as individual

demos. These demos can be found through The Chang School’s

Distance Education website, as part of a set of resources for a local

workshop run at the university.

Toolkit: WAI-ARIA Workshop Resources

Another great resource for WAI-ARIA code and examples is the

W3C’s WAI-ARIA Authoring Practices site. Within the

documentation are many demonstrations of how WAI-ARIA can be

used. We will typically follow the best practices recommended by

W3C, though, we may vary from those on occasion when more

practical solutions are possible. These variations will be

documented in the code comments.

Toolkit:

40 | Other WAI-ARIA Libraries

• WAI-ARIA Authoring Practices 1.1

• ARIA Techniques for WCAG 2.0

• Using WAI-ARIA

Other WAI-ARIA Libraries | 41

ChromeVox Screen Reader
Install and Setup

We introduce you to ChromeVox early on, so you’ll have an

opportunity to practice using the screen reader we will be using

throughout the book. It will be a key tool in your toolkit that you’ll

use to test your work, and it will be the tool the instructors use

when marking assignments.

Though there are other more popular screen readers, like JAWS

and NVDA to name a couple, for day-to-day screen reader testing,

ChromeVox (particularly the ChromeVox Plugin for the Chrome web

browser) is our screen reader of choice because it is simple to install

and configure, easy to use, free and open source, and works across

computer platforms.

Another reason ChromeVox works well for accessibility testing is

its good support for WAI-ARIA. WAI-ARIA is still a relatively new

technology, and, as of mid-2018, it is still being supported

inconsistently across available browsers and screen readers. When

developing for the Web, do use WAI-ARIA as it is intended to be

used as documented in the WAI-ARIA specification and test it with

ChromeVox. You will still want to test with JAWS or perhaps NVDA

for production testing, as these are more likely to be used by blind

users. For this book, however, we will only be using ChromeVox.

While a relatively small number of screen reader users currently

use ChromeVox, it is a highly effective tool for developers when

testing web content. Also, ChromeVox is tailored to work with

features of Google Drive, so even for users of other screen readers,

ChromeVox may be preferable when working with Google Docs,

Sheets, and Slides, etc.

Toolkit: Visit the Chrome store while using the Chrome web

42 | ChromeVox Screen Reader
Install and Setup

browser to install the ChromeVox screen reader. It will be a

key element of your Toolkit.

How to Set Up the ChromeVox Screen Reader

1. Open the Chrome web browser (install Chrome, if needed).

2. Type “Chromevox” into Chrome’s address bar, or into Google

search.

3. Follow the ChromeVox link to the Chrome Web Store (the first

link in the search results).

4. Click the “Add to Chrome” button.

5. In the dialog box that opens, click “Add extension.”

6. Now installed, find the ChromeVox icon near the top right of

Chrome to review its options.

7. In the Options, set the ChromeVox modifier key to Alt or Ctrl

or both (referred to here as CVox).

8. In the Options, choose your preferred voice from the Voices

menu.

9. Done, turn ChromeVox on or off by pressing and holding the

modifier key then pressing the letter “A” twice (i.e., CVox + A +

A).

If you would rather see ChromeVox installed, the video below

describes how to install and begin using ChromeVox.

Video: Installing ChromeVox

ChromeVox Screen Reader Install and Setup | 43

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=190

ChromeVox Testing and Associated Key
Commands

Toolkit: Download the ChromeVox_Key_Commands file

(Word), outlined in the table below, print it or keep it nearby

when completing the first few activities.

Key Point: Be sure you have the modifier key set in

44 | ChromeVox Screen Reader Install and Setup

ChromeVox Options, or you are going to have difficulty with

the activities.

*The ChromeVox modifier key (i.e., Cvox) is set in Chrome’s

Settings > Extensions > ChromeVox > Options, typically set to

Alt or Ctrl.

Key Point: When you are navigating with ChromeVox, it will

add its own highlighting around elements when they receive

focus. Test for focus visibility (WCAG 2 Guideline 2.4.7) when

ChromeVox is not running. For a complete list of key

commands see the ChromeVox Options, accessible through

the ChromeVox button that gets added to Chrome in the top

right corner of the browser during installation. Default

commands are listed and can be changed if needed.

ChromeVox Screen Reader Install and Setup | 45

Task Task Description Keyboard
Command

Toggle
ChromeVox
On/Off

To turn ChromeVox on or off without having
to go into the ChromeVox Settings Cvox+A+A

Stop
Reading Stop ChromeVox from reading Ctrl

Default
Reading

When a web page loads, ChromeVox will
read the element that takes focus on the
page. Use the Cvox+Arrow keys to read
through content. Listen to the spoken
output and note any inconsistencies from
what one might expect to hear based on
what is visible on the screen.

Cvox+Up
and Down
Arrows

Tab
Navigation

When a page has loaded, press the Tab key
to navigate through operable elements of
the page like links and forms. Listen to the
output when these elements are in focus,
and note any elements that are clickable but
not focusable with the keyboard.

Also listen for hidden elements such as
bypass links or other elements that are not
visible but are read aloud by ChromeVox.

Tab, Shift +
Tab

Navigate
through
Headings

Step through all the headings on a page.
Note whether all headings are announced as
expected. Note the heading level announced.
Are they sequenced to create semantic
structure (i.e., nested in the proper order)?

Cvox+L+H
then Up/
Down
Arrows

Navigate
through
Landmarks

Step through the landmarks, key navigation
points on a page. Are all areas of the page
contained in a landmarked region? Note any
missing landmarks.

Cvox+L+;
(semi-colon)
then Up/
Down
Arrows

List Links

List the links and navigate through them
using the Arrow keys, listen for
meaningfulness, or listen for context when
links are otherwise meaningless.

Cvox+L+L
then Up/
Down
Arrows

Navigate
through
Forms

Navigate to forms on a page, then press the
Tab or F keys to listen to each of the fields.
Are fields announced effectively, including
required fields?

Cvox+L+F
then Up/
Down
Arrows

46 | ChromeVox Screen Reader Install and Setup

Navigate
through
Tables

Navigate to Tables on a page, press Enter to
go to a table, press Up/Down Arrow keys to
move through cells in sequence (left to right,
top to bottom), press Ctrl+Alt+Arrow to
move to adjacent cells, press Ctrl+Alt and 5
on the number pad to list column and row
headers where applicable. Note whether
header cells are read or not. Are Fieldset
labels announced, where applicable?

Cvox+L+T
then Up/
Down
Arrows then
Enter to
select Table

Cvox+Arrow
to move
within table

Cvox+TH
to
announce
headers

ChromeVox Screen Reader Install and Setup | 47

Activity 2: Set Up and Use
ChromeVox

Set Up and Use ChromeVox

Key Point:

• If you are blind and use a screen reader other than

ChromeVox, complete the activity using your preferred

screen reader. Be sure to state the name of the screen

reader you are using.

• If you are not blind, regardless of whether you use

another screen reader to test accessibility for instance,

please use ChromeVox. What’s important is how

ChromeVox interacts with the activity files you will be

updating in the activities of this book.

In this activity, you will navigate through

a website using only a keyboard. Describe how the screen reader

behaves. For a challenge, navigate with your monitor turned off (or

darkened so you can’t see what you are doing). The aim of this

48 | Activity 2: Set Up and Use
ChromeVox

exercise is to discover how WAI-ARIA is making elements on the

page understandable by listening alone, and to introduce screen

reader review into your website testing regimen.

Refer back to ChromeVox Screen Reader Install and Setup and set

up ChromeVox, if you have not already.

Requirements

Open the Web Accessibility Auditing Showcase website.

Navigate the homepage only with your monitor darkened and

without using your mouse. Describe what the screen reader

announces as you pass through the following elements:

• Left side menu

• Carousel at the top of the content area of the page

• Accordion on the right

• Tab panel in the centre of the page

• Landmarks present on the page (list them)

Also, answer the following questions:

• Are you able to navigate effectively?

• What difficulties did you experience, if any?

• What could be improved, if anything, to make navigation more

effective?

Activity 2: Set Up and Use ChromeVox | 49

Grading Rubric

Criteria Points

Good descriptions provided for each element listed 5.0 pts

Three questions answered effectively 5.0 pts

Total Points: 10.0

50 | Activity 2: Set Up and Use ChromeVox

WAI-ARIA and HTML 5

WAI-ARIA was released as a complement to HTML5. Its main

purpose is to give developers more freedom to build custom web

content, web applications, and interface controls created with

HTML, JavaScript, and Ajax. WAI-ARIA provides a framework for

adding semantics that make it possible for assistive technology

users to understand and operate these custom elements.

Most HTML has built-in semantics and does not generally need

WAI-ARIA. However, when HTML is being used in a non-standard

way, like making a button out of a <div> , then WAI-ARIA can be

added to that <div> to make it appear as a button to a screen

reader by adding the following: Add the role of “button”

(i.e., role="button"), add a null tabindex value

(i.e., tabindex="0"), which makes it focusable, then define its

state using the aria-pressed attribute, which is updated with

JavaScript when the button is pressed. In the case of an actual

<button> element, these properties are all already defined, so

there is no need to use WAI-ARIA.

<div role="button" aria-pressed="false" tabindex="0">Press Me</div>

Though WAI-ARIA is typically used with HTML5, it can also be used

with XHTML and HTML4. You may find, however, that HTML

validators see WAI-ARIA as broken markup in older versions of

HTML, but don’t worry about that. Any WAI-ARIA related errors that

a validator might identify in older HTML can generally be ignored

(assuming it has been used correctly). By now though, you should be

using HTML5. If you are retrofitting older code, then go ahead and

add WAI-ARIA to it. If you are developing something new, then go

with HTML5.

WAI-ARIA and HTML 5 | 51

Self-Test 1

Complete the following questions to test your understanding of

some key lessons in the Introduction and Chapter 1.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=205

52 | Self-Test 1

2. INTRODUCTION TO
WAI-ARIA

2. Introduction to WAI-ARIA | 53

Objectives and Activities

Objectives

By the end of this unit, you will be able

to:

• Explain how WAI-ARIA works

• Distinguish between static vs. dynamic WAI-ARIA

• Identify WAI-ARIA roles, states, and properties

• Recognize browser and screen reader support for WAI-ARIA

• Compare and contrast graceful degradation vs progressive

enhancement

• Outline the WAI-ARIA taxonomy

Activities

• WAI-ARIA Scavenger Hunt (Showcase)

Objectives and Activities | 55

What is WAI-ARIA?

W3C definition of WAI-ARIA

“WAI-ARIA provides a framework for adding attributes

to identify features for user interaction, how they relate

to each other, and their current state.”

Source: W3C

WAI-ARIA provides web authors with the following:

• Roles to describe the type of widget presented, such as

“menu”, “treeitem”, “slider”, and “progressmeter”

• Roles to describe the structure of the web page, such as

headings, regions, and tables (grids)

• Properties to describe the state widgets are in, such as

“checked” for a check box, or “haspopup” for a menu.

• Properties to define live regions of a page that are likely to

get updates (such as stock quotes), as well as an

interruption policy for those updates — for example,

critical updates may be presented in an alert dialog box

and incidental updates occur within the page

• Properties for drag-and-drop that describe drag sources

and drop targets

• A way to provide keyboard navigation for the web objects

and events, such as those mentioned above

Source: W3C

56 | What is WAI-ARIA?

Some elements of the framework can be used on their own to add

accessibility to web content (e.g., landmarks). More often, they are

combined with scripting that is used to dynamically add or remove

WAI-ARIA attributes depending on the context.

WAI-ARIA provides semantics for custom widgets and web

applications that can be understood by assistive technologies (ATs)

and conveyed to users in a “human understandable” form. For

example, HTML list markup might be used to create a navigation

bar with menus and submenus. Without WAI-ARIA a screen reader

would simply recognize the navigation bar as a collection of nested

lists. Adding WAI-ARIA menu attributes (e.g., menubar, menu,

menuitem, aria-haspopup, aria-expanded) can give the nested list

a whole new meaning, more easily understood as a means of

navigation than the list would be understood.

W3C definition of semantics

“The meaning of something as understood by a

human, defined in a way that computers can process a

representation of an object, such as elements and

attributes, and reliably represent the object in a way

that various humans will achieve a mutually consistent

understanding of the object.”

Source: W3C

This definition of semantics in programming is much like the

common definition of the word: “the meaning, or an interpretation

of the meaning” (dictionary.com). Semantics in the context of web

accessibility refers to the defining of meaning as it applies to

functional elements of web content, and how that functionality is

conveyed to assistive technology users, especially, screen reader

users.

What is WAI-ARIA? | 57

When and When Not to Use WAI-ARIA

WAI-ARIA is supposed to be used when semantics are required to

make a web application or widget understandable. For example, if

you are using a <div> to create a checkbox, along with some

scripting you can assign the WAI-ARIA role “checkbox” to that

<div> to make it appear as a checkbox.

That said though, when there is a native HTML element available,

like a checkbox, it is almost always better to use the native version

than creating your own. The native version will already have all

the associated semantics by default. Since the native versions are

standardized, they are more likely to be supported across browsers

and assistive technologies.

For native HTML elements, it is not necessary to use WAI-ARIA.

For an HTML <form> element for instance, there is no need to

include role="form" with the element. There are a few

exceptions to this rule, however. For some of the newer HTML5

elements, like <nav> and <main> for instance, it does not hurt

to include the WAI-ARIA equivalent role="navigation" and

role="main" in these elements for the time being, to

accommodate some of the inconsistent support for these elements

across browsers and ATs. HTML validators will still give you

warnings about the redundant roles, but you can safely ignore these.

You should also be careful when using WAI-ARIA with HTML

elements that already have semantics. For example, if you use <h3
role="button">something</h3> , the semantics associated

with the heading will be overridden, thus, potentially breaking the

structure of a document. In a case like this, a better approach would

be to wrap the heading in a <div> then assign role="button"
to the <div> to preserve the structural semantics of the heading,

as seen in the examples below.

58 | What is WAI-ARIA?

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=259

What is WAI-ARIA? | 59

Roles, States, and Properties

The semantics described earlier are created by adding roles, states,

and properties to HTML elements.

Roles

W3C definition of roles

“Main indicator of type. This semantic association

allows tools to present and support interaction with the

object in a manner that is consistent with user

expectations about other objects of that type.”

Source: W3C

Examples of roles include menu, alert, banner, tree, tabpanel,

textbox, and so on. Once assigned to an element, roles must not

change over time or with user input. If, for instance, you wanted

to change from a “menubar” while viewing in full screen mode to a

toggle “menu” when viewed on a mobile device, the entire block of

markup would change, rather than switching menubar for menu.

Roles are categorized into six groupings. Here are the groups with

a few examples of each type:

• Abstract role (not to be used by authors in content, the base

for the WAI-ARIA ontology)

• Widget roles (e.g., button, link, menuitem)

• Document structure roles (e.g., article, feed, list, table)

60 | Roles, States, and Properties

• Landmark roles (e.g., banner, navigation, main, complementary)

• Live region roles (e.g., alert, log, timer)

• Window roles (e.g., alertdialog, dialog)

Roles are typically added to HTML elements using the role attribute

as follows. In the example below, an unordered list is given a role

of menubar . Typically, this is used when creating a horizontal

navigation bar across the top of a user interface. Each list item is

given a role of menuitem .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=267

Suggested Reading: Here is the full list of roles in WAI-ARIA

1.1.

States

W3C definition of states

“A state is a dynamic property expressing

characteristics of an object that may change in response

to user action or automated processes. States do not

affect the essential nature of the object, but represent

Roles, States, and Properties | 61

data associated with the object or user interaction

possibilities. See: clarification of states versus

properties.”

Source: W3C

States are used along with roles, typically, to define its functional

status. States are much like properties, though they typically change

while an application or widget is being used (e.g., aria-checked
changes between true and false). Properties typically do not change

(e.g., aria-labelledby keeps the same value). States and

properties are all “aria-” prefixed, unlike roles.

Here are a few examples of states:

• aria-busy

• aria-checked

• aria-expanded

• aria-disabled

• aria-hidden

Properties

W3C definition of properties

“Attributes that are essential to the nature of a

given object, or that represent a data value associated

with the object. A change of a property may significantly

62 | Roles, States, and Properties

impact the meaning or presentation of an object.

Certain properties (for example, aria-multiline) are less

likely to change than states, but note that the frequency

of change difference is not a rule. A few properties, such

as aria-activedescendant, aria-valuenow, and aria-

valuetext are expected to change often. See clarification

of states versus properties.”

Source: W3C

Properties, as mentioned above, are much like states in how they

are used along with roles. However, unlike states that change,

properties tend to remain the same (though this is not a rule).

Intuitively, you may notice the changing nature of states listed

above, and the static nature of properties listed below.

Here are a few examples of properties:

• aria-describedby

• aria-atomic

• aria-autocomplete

• aria-colcount

• aria-colspan

• aria-controls

Suggested Reading: See the WAI-ARIA Specification for a

full list of states and properties.

Roles, States, and Properties | 63

Static vs. Dynamic
WAI-ARIA

Even if you don’t use JavaScript, there is a good amount you can

do with static WAI-ARIA to improve the accessibility of a website or

web application. You may have already gathered from the discussion

of states and properties that some WAI-ARIA can be written right

into the HTML of a web page (e.g., properties and landmarks).

Others need to be dynamically updated based on user input or

context (e.g., states and some properties).

Some of the static WAI-ARIA attributes you are likely to use are

listed below, with their descriptions from W3C.

Global Static Properties

• aria-describedby: Identifies the element (or elements) that

describes the object.

• aria-labelledby: Identifies the element (or elements) that labels

the current element.

• aria-label: Defines a string value that labels the current

element.

• aria-controls: Identifies the element (or elements) whose

contents or presence are controlled by the current element.

• aria-owns: Identifies an element (or elements) in order to

define a visual, functional, or contextual parent/child

relationship between DOM elements where the DOM

hierarchy cannot be used to represent the relationship.

• aria-details: Identifies the element that provides a detailed,

extended description for the object.

64 | Static vs. Dynamic WAI-ARIA

Below is an example of some of these attributes in action. Though

this example would need some scripting to handle the submenu

opening and closing, and dynamically updating aria-expanded to

false when the submenu is closed, and update the active element

referenced in aria-activedescendant , you can get an idea of

the semantics that are being applied to make the nested list

announce itself as a menu. Watch or listen to the screen reader

output in the video that follows the code box below to understand

how the WAI-ARIA attributes are read. Examine the code in the code

box to understand what WAI-ARIA is being used to produce that

output.

Static vs. Dynamic WAI-ARIA | 65

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=272

How Does the Above Markup Work?

1. Navigating with the Tab key, focus first goes to the

"menu_container" div, which is made keyboard focusable

with the tabindex="0" attribute.

66 | Static vs. Dynamic WAI-ARIA

2. There the screen reader reads the content of the “chooser” div,

identified by aria-details , describing what the menu is

used for. This div is hidden from view but available to screen

readers. This div could be made visible to make it available for

everyone.

3. Next, the “offerings” UL receives focus, also made focusable

with tabindex="0" .

4. There, the screen reader reads the content of the “navhowto”

div, identified by aria-describedby , explaining how to

navigate the menu. This div is hidden from view for most users.

5. Next, using the Arrow keys as instructed by the “navhowto” div,

the ‘Home’ menuitem takes focus, announcing “menubar

expanded with submenu, Home, menu”. Probably a little more

verbose in this case than it needs to be, but that’s how

ChromeVox handles menu items.

6. Using the Down Arrow key, focus is moved to the “Courses”

menu item, announcing “Courses, menu expanded with

submenu.” The aria-haspopup attribute is what causes a

screen reader to announce a submenu.

aria-expanded="true" causes the screen reader to

announce that the menu is expanded.

7. Using the Down Arrow, focus moves into the submenu,

announcing “Menu with two items, Economics, menuitem 1 of

two.” The submenu is announced as a menu of its own,

identified by adding role="menu" to the UL containing the

two submenu items.

8. Finally, using the Down Arrow, the screen reader announces

“Computer Science, menuitem two of two.”

Here’s a video that shows how ChromeVox would read out the menu

described above:

Video: Example Menu with WAI-ARIA (0:33)

Static vs. Dynamic WAI-ARIA | 67

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=272

Most of the WAI-ARIA elements described in the above series of

steps can be used statically by typing the attributes right into the

HTML. The aria-activedescendant would typically be

dynamically updated with script as the menuitems are selected.

The aria-expanded would also be updated dynamically

switching between true and false when the submenu is toggled

opened or closed.

Here are some more static WAI-ARIA attributes, which we’ll look

at in a little more detail later in the book.

Widget Static Attributes

• aria-haspopup: Indicates the availability and type of

68 | Static vs. Dynamic WAI-ARIA

interactive popup element, such as menu or dialog, that can be

triggered by an element.

• aria-modal: Indicates whether an element is modal when

displayed

• aria-readonly: Indicates that the element is not editable but is

otherwise operable.

• aria-required: Indicates that user input is required on the

element before a form may be submitted.

Live Static Regions

• aria-live: Indicates that an element will be updated and

describes the types of updates the user agents, assistive

technologies, and user can expect from the live region.

• aria-atomic: Indicates whether assistive technologies will

present all, or only parts of, the changed region based on the

change notifications defined by the aria-relevant attribute.

• aria-relevant: Indicates what notifications the user agent will

trigger when the accessibility tree within a live region is

modified.

Toolkit: For a full list of roles, see section 1 in the The ARIA

Role Matrices.

Static vs. Dynamic WAI-ARIA | 69

Browser and Screen Reader
Support for WAI-ARIA

Because WAI-ARIA is relatively new, its support across browsers and

assistive technologies is still somewhat inconsistent. That should

not, however, discourage you from using it. Be aware that

workarounds may be needed in some cases, at least for the short

term as browsers and assistive technologies progress to implement

support for the full WAI-ARIA specification.

For now, it is advisable to test WAI-ARIA implementations across

multiple browsers and screen readers.

Look over the following references and add them to your Toolkit.

Toolkit:

• WAI-ARIA Screen Reader Compatibility (Dec 27, 2017)

Note: This resource does not include ChromeVox.

• WAI-ARIA Browser Compatibility

• ARIA Alert Support

• User Agent Support Notes for ARIA Techniques

70 | Browser and Screen Reader
Support for WAI-ARIA

Graceful Degradation vs.
Progressive Enhancement

Given the range of support for WAI-ARIA across current screen

readers and browsers, strategies like graceful degradation and

progressive enhancement are useful for accommodating varying

implementations and ensuring that tools developed with WAI-ARIA

are accessible regardless of support.

Depending on your situation, one development method may be

preferable over the other, though in general progressive

enhancement is preferred over graceful degradation. That is,

creating base functionality that works for everyone is preferred,

rather than providing enhancements when they are supported by

the browser and/or assistive technology. Graceful degradation, on

the other hand, starts with the enhancement, then provides

alternatives where the enhancements are not supported. While they

may sound equivalent, the latter typically requires less effort, even

though it is more of a Band-Aid solution to correct an

incompatibility. The former takes a little more effort and is more

about providing enhancements when they are supported while

always providing a base functionality that works for everyone.

Definitions

In his article, “Graceful degradation versus progressive

enhancement,” Christian Heilman provides some useful definitions

that help distinguish between the two methods:

Graceful Degradation vs. Progressive
Enhancement | 71

“Graceful degradation – Providing an alternative

version of your functionality or making the user aware

of shortcomings of a product as a safety measure to

ensure that the product is usable.”

“Progressive enhancement – Starting with a baseline

of usable functionality, then increasing the richness of

the user experience step by step by testing for support

for enhancements before applying them.”

“Degrading gracefully means looking back whereas enhancing

progressively means looking forward whilst keeping your feet on

firm ground.”

Suggested Reading: These definitions come from: Graceful

degradation versus progressive enhancement (Christian

Heilman, CC-BY NC-SA).

When to Use Which Method with WAI-ARIA

Though progressive enhancement and graceful degradation are

development methods that might be followed on any web project,

here, we talk about them as they relate to the use of WAI-ARIA.

Support for WAI-ARIA is improving constantly, but there are still

many inconsistencies between browsers and assistive technologies.

And there will still be those using older assistive technologies that

72 | Graceful Degradation vs. Progressive Enhancement

were around before WAI-ARIA support was added. Because assistive

technologies tend to be expensive, users tend to upgrade less often,

thus it is important to support technologies that may be five years

old or somewhat older.

Browsers, on the other hand, are typically free, and readily

available. However, that does not necessarily mean developers can

rely on users having the latest or even a current browser. It is

not uncommon, particularly in large organizations, to restrict

employees’ ability to upgrade their own systems.

A simple example of progressive enhancement (though it could

also be seen as graceful degradation) is in within–web page

navigation for screen reader and keyboard-only users. Before the

advent of WAI-ARIA landmarks, the way to provide this within-

page navigation was to provide bypass links, which would typically

be located at the top left of the page. These bypass links lead to

strategically placed anchors, often next to navigation elements and

at the top of the main content area. These links are standard HTML

and will work for everyone. WAI-ARIA landmarks are relatively new,

though support for them in current browsers and assistive

technologies is good. But, given some users will be using older

technologies, at least for the short term, it is advisable to provide

landmarks as an enhancement and continue using bypass links to

ensure there is always a way to navigate effectively through web

content.

Similarly, when using the newer HTML elements that may not be

supported by current assistive technologies, it is a good idea to use

redundant roles, at least in the short term. For example, <nav>
and <main> are new HTML elements, which are supposed to be

equivalent to the navigation and main WAI-ARIA roles. However, not

all ATs support the new tags at present. Thus, it’s advisable to use

redundant roles with these elements, as seen in the markup below,

even though HTML validators will flag them as a warning.

Graceful Degradation vs. Progressive Enhancement | 73

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=275

74 | Graceful Degradation vs. Progressive Enhancement

Validating WAI-ARIA

There are a number of tools that can be used to validate WAI-ARIA

to ensure it is being used correctly. Watch the following video for a

quick look at WAI-ARIA validation with Lighthouse and aXe. Install

these tools in your browser, so you have them available for testing

as you complete the activities in the coming chapters.

Video: WAI-ARIA Validation

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=281

Toolkit:

Validating WAI-ARIA | 75

Web-Based Validator

• W3C HTML Validator (validates WAI-ARIA as part of

HTML5)

Chrome

• Chrome Developer Tools (comes with Chrome)

• Lighthouse (extends Chrome Developer Tools with an

Audit tab)

• ARIA Validator

• aXe (for Chrome)

Firefox

• aXe (for Firefox)

76 | Validating WAI-ARIA

Figure: WAI-
ARIA
taxonomy
thumbnail.
Click to open
full-sized
image.

WAI-ARIA Taxonomy

In addition to the full list of WAI-ARIA attributes in the specification,

the visual presentation of that list in the WAI-ARIA taxonomy can be

helpful in understanding the relationships between elements. This

image can also help those who are visual learners to see how WAI-

ARIA is organized. Click on the thumbnail below to open the full

visual taxonomy.

Also, see the SVG version of the WAI-ARIA taxonomy

A UML-XMLversion and an RDF version are also available to

import into systems that support those formats.

Suggested Reading: A representation or the WAI-ARIA

taxonomy as a cheat sheet.

WAI-ARIA Taxonomy | 77

Activity 3: WAI-ARIA
Scavenger Hunt

WAI-ARIA Scavenger Hunt

The overall goal of this book is to provide the tools and knowledge

needed to make web interactivity accessible to screen reader users.

In this activity, you will use ChromeVox and code review to identify

WAI-ARIA used throughout the Web Accessibility Auditing

Showcase home page.

Requirements

Although we have only touched on the details of WAI-ARIA, in this

activity, you will be spending some time examining the homepage

of the Web Accessibility Auditing Showcase website. Use a

combination of the following to determine how the WAI-ARIA

elements are being used:

• Test with ChromeVox to hear what WAI-ARIA sounds like with

a screen reader.

• Review the source code.

78 | Activity 3: WAI-ARIA Scavenger
Hunt

For full marks on this activity, list at least five static and five

dynamic WAI-ARIA enabled elements in your answer. Include a brief

description for each. Here’s a few made-up examples of what you

might report in your findings:

• aria-describedby : used in the outer div of the side menu,

to announce instructions on how the side menu works with a

keyboard

• tabindex="0" : used to give keyboard access to the custom

buttons in the User Survey

• role="menu" : used to make the main navigation list appear

as a menu to screen readers

Finally, here is the Web Accessibility Auditing Showcase website.

Review only the home page.

Key Point: There is static and dynamic WAI-ARIA used in this

page. You may View Source to find any static WAI-ARIA being

used. Use your browser’s Inspect tool to find dynamic WAI-

ARIA. Interact with the site to produce changes to the

dynamic WAI-ARIA, and note those changes.

Note: Not all ARIA-related markup starts with the “aria-” prefix.

Scan through the WAI-ARIA documentation introduced in this unit

for a listing of all potential WAI-ARIA markup you might come

across. Also, not all accessibility enhancements are WAI-ARIA. For

example, alt is an accessibility feature of the HTML img element.

You can mention these other accessibility features; however, they

will not count toward your mark on this activity.

Activity 3: WAI-ARIA Scavenger Hunt | 79

Grading Rubric

Criteria Points

At least five instances of static WAI-ARIA being used in the page
are listed.

5.0
pts

At least five instances of dynamic WAI-ARIA being used in the
page are listed.

5.0
pts

Total Points: 10.0

80 | Activity 3: WAI-ARIA Scavenger Hunt

Self-Test 2

Answer the following questions to test your understanding of key

lessons in this unit.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=289

Self-Test 2 | 81

3. BASIC WAI-ARIA

3. Basic WAI-ARIA | 83

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Identify WAI-ARIA landmarks

• Describe common static roles

• Create accessible alerts and feedback

• Use WAI-ARIA to add keyboard access

• Identify when and where to use WAI-ARIA application and

presentation roles

• Use live regions for live updating information

Activities

• Update the landmarks book file with appropriate landmarks

• Provide live alerts for screen readers when feedback or error

messages are presented

Objectives and Activities | 85

WAI-ARIA Landmarks

WAI-ARIA landmarks are used to define regions on a web page.

They provide a means for assistive technology users to effectively

navigate the various areas of a page. WAI-ARIA landmarks should be

used with other means of within-page navigation, such as bypass

links and page headings. These two latter means of navigating have

been around for much longer, and many will continue to use these

elements as their primary method of moving around within a web

page.

There are eight landmark roles.
Follow the links below to read about each type of landmark:

• banner

• complementary

• contentinfo

• form

• main

• navigation

• region

• search

In the following short video, you will see how ChromeVox interacts

with landmarked regions for the next activity coming up in this unit.

Use it as a model for implementing your own landmarks. Aim to have

your activity submission operate the same as it does in the video.

Video: WAI-ARIA Landmarks Demo (1:07)

86 | WAI-ARIA Landmarks

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=303

To help visualize landmarked regions, the figure below presents

well-defined areas on the page, each of which serves a different

purpose. Banner areas, the element that contains the content of

each banner region, would be assigned role="banner" . The

menu on the left would have its container assigned

role="navigation" , as would other navigation bars or menus if

they were present. The main content area, assigned role="main" ,

is where the primary content of the page appears. There should only

be one main region. The region on the right containing secondary

information, assigned role="complementary" , is where you

might find advertising or related resources. And, finally, the

container around the footer area would be assigned

role="contentinfo" . This is where details such as copyright, a

privacy statement, contact information, etc., would be located.

Websites may be laid out in a multitude of ways; this particular

WAI-ARIA Landmarks | 87

layout is just an example. The landmarks assigned to any given

region should reflect the function of that particular region,

regardless of where it might appear on the page. If advertising were

spread across a region at the bottom of the page, for example, then

that region would be assigned role="complementary" .

Example of landmarked regions of a web page:

Custom Regions

While most of the landmarks are relatively self-explanatory in terms

of what they should contain, role="region" needs some

explanation. This landmark role can be used to contain specific

information that is not effectively described by one of the other

88 | WAI-ARIA Landmarks

landmark roles and is important enough that a user might want to

navigate directly to that area of the page. When it is used, it must

be accompanied by aria-label or aria-labelledby if there is

an existing element on the page that describes the region (such as a

heading).

For example, you may want to define a specific area on each

page where contact information or a contact form is located. The

following markup might be used to define a “contact region.”

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=303

Other Considerations When Using Landmarks

• The whole page defined in regions: When landmarks are used,

it is considered best practice to contain all information

presented on a page within a region, so no information is

orphaned outside the defined regions.

• Duplicate roles: For landmarks that may be used for multiple

regions, such as role="navigation" , these regions should

be distinguished from one another. For instance, use aria-
label or aria-labelledby to describe a “main

navigation” bar and a “content menu.” Both are considered

navigation features, even though they serve different purposes.

Suggested Reading:

WAI-ARIA Landmarks | 89

• Using ARIA landmarks to identify regions of a page

• Page Regions (WAI Web Accessibility Tutorials)

• ARIA Landmarks Example

90 | WAI-ARIA Landmarks

Common Static WAI-ARIA

Much of the WAI-ARIA introduced so far is static. That is, it can

be written directly into HTML elements as attributes, their values

typically do not change, and they do not require scripting to control

their behaviour. Landmarks and roles, for example, are all static.

Anyone who knows how to read and write HTML can make use of

these attributes by simply adding them to HTML elements. WAI-

ARIA properties are also typically static, though not always.

As discussed earlier, static WAI-ARIA often consists of properties

given to define specific characteristics of an HTML element that

has a particular functional role. For example, a nested list may be

defined as a menu using role="menubar" to define the top-level

list and role="menu" to define sublists.

List items in the top-level list that have a nested sublist would

be given the attribute aria-haspopup="true" (or aria-
haspopup="menu"). Thus, when encountered by assistive

technology, a list item with this attribute will announce that a

submenu is present (e.g., “menu with submenu” when using

ChromeVox).

Try This: Using ChromeVox, navigate through the menu bar

widget example below, created by Hans Hillen at the Paciello

Group, to hear how submenus are announced. Open this

demo in a new window.

Frequently Used WAI-ARIA Attributes

You have already been introduced to a few static attributes. Those

and a handful of others you are likely to use regularly are listed

Common Static WAI-ARIA | 91

here. This is not a full list. Follow the links and read through their

descriptions.

• aria-describedby

• aria-labelledby

• aria-label

• aria-required

• aria-controls

• aria-details

• aria-haspopup

• aria-live

• aria-owns

• aria-relevant

• aria-roledescription

92 | Common Static WAI-ARIA

WAI-ARIA Alert and
Message Dialogs

Providing feedback after a user completes an action is a critical

accessibility feature. Feedback can be an error message when

something has gone wrong. Additionally, it can be a confirmation

or warning, after which a user has to make a decision before

proceeding. Or, it could be completion feedback that is presented

after a particular action has occurred to indicate it was successful.

The latter is often overlooked by developers. However, for people

using a screen reader, notification that an action was successful

can be as important as providing error messages. When completion

feedback is provided, screen reader users do not need to search

through the content of the screen to be sure the action they just

completed was successful — the process can be quite time-

consuming.

In each type of feedback, it is critical that messages be easy

to access. The best strategy for making feedback accessible is to

use the WAI-ARIA alert or alert-dialog roles. These are both types

of live regions. When the content of the container element with

role="alert" changes, the content that appears is automatically

read aloud by screen readers. A WAI-ARIA alert has an implicit

aria-live="assertive" and aria-atomic="true" (to be

covered in more detail in the section on live regions). This means

that, when the message appears, it will interrupt whatever the

screen reader is in the middle of reading, and the entire content of

the element will be read, as opposed to just the new content added

(i.e., aria-atomic="false").

Try This: In the following example of a WAI-ARIA alert, start

ChromeVox, then press the “Say Something” button to hear

WAI-ARIA Alert and Message
Dialogs | 93

how ChromeVox handles the message that appears. Examine

the script and HTML below to see how it was done.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=308

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=308

alert vs. alertdialog

Error, warning, and completion feedback will typically be created

with role="alert" , while confirmation feedback will often use

role="alertdialog" . Use role="alert" when no user input

94 | WAI-ARIA Alert and Message Dialogs

is needed. Use role="alertdialog" when user input is

expected, with focus sent to the dialog. At least one element in the

dialog must be focusable when using role="alertdialog" .

Watch and listen to the following video to understand how

ChromeVox handles WAI-ARIA alerts.

Video: WAI-ARIA Alerts (1:09)

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=308

Suggested Reading: Using ARIA role=”alert” or Live Regions

to Identify Errors

WAI-ARIA Alert and Message Dialogs | 95

Modal Dialogs

Modal dialogs interrupt users and require an action. They are

appropriate when users’ attention needs to be directed toward

important information.

Modal dialogs are defined using role="alertdialog" and

aria-modal="true" . Be aware what WAI-ARIA is used for

modals, and be aware that when a modal dialog is displayed, focus

must be sent to the dialog, and it must remain in the dialog until

whatever interaction is complete (e.g., clicking the confirmation

button) and the dialog closes. When the dialog closes, focus must be

returned to the location from where the dialog was opened.

Dialogs

Dialogs are used like modal dialogs are, except it is still possible to

interact with the other content of the page. These are defined using

role="dialog" .

Suggested Reading:

• Using the Dialog Role (Mozilla)

• Modal and Nonmodal Dialogs: When (and When Not) to

Use Them

96 | WAI-ARIA Alert and Message Dialogs

Using Tabindex

As you may know, the HTML tabindex attribute is a way to order

the path the cursor takes as users use the Tab key to navigate

through a website or web application. In general, however, you want

to avoid using tabindex in this way, particularly when it disrupts the

default tab order, which may end up creating confusion when the

cursor does not follow an expected path (i.e., left to right, top to

bottom). That’s not to say don’t ever use them, but be careful.

With HTML5 and the introduction of WAI-ARIA, tabindex="0"
is added to make it possible for developers to add keyboard

accessibility to an element that would not normally have keyboard

functionality. For example, it might be used to make a <div>
focusable. Likewise, tabindex="-1" is added to remove keyboard

accessibility from an element. The two are likely to be used with

scripting to dynamically add and remove keyboard access to

elements when focus needs to be strategically placed within a

widget or web application. When the tabindex attribute is used

in this way, it is referred to as a roving tabindex .

Try This: Take a look at the tab panels throughout the

Showcase site to see how the tabs in the tabpanels toggle

between values “-1” and “0” to control which tab has focus,

using your browser’s Inspect feature. This demo works better

on a wide screen, before responsiveness kicks in. Either

reduce the zoom level, or drag your browser window wider

until the menu appears at the side, instead of above the

content.

Open demo in a new window.

You can also use tabindex="0" in a static way when context is

needed to describe how to use a menu, for instance. A <div> can

Using Tabindex | 97

be wrapped around the menu, given tabindex="0" to make it

focusable, so, when a user navigates to the <div> , it announces

instructions for using the keyboard to navigate within the menu.

The following example demonstrates using tabindex , along with

aria-label , to provide context information. If you navigate

through the Showcase site above with ChromeVox, you’ll notice this

strategy with the side menu, announcing how to operate the menu

with a keyboard.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=310

98 | Using Tabindex

Keyboard Interaction

Keyboard access is perhaps the most important accessibility feature

that can go into a website, widget, or web application. However, it is

often overlooked by developers, who are typically mouse users and

may not have keyboard usability as a part of their testing regimen.

People who are blind are typically unable to use a mouse, so any

feature that relies on a mouse alone to function will likely be

inaccessible to them. Fortunately, it is relatively easy to include

keyboard access. It’s more a matter of remembering to add it when

mouse access is added.

The following is a simple example of including both mouse and

keyboard events when defining interaction for a widget or web

application. Examine the JavaScript to see how mouse and keyboard

events are handled, then under the Result tab, try operating the

button with a keyboard and mouse while using ChromeVox. How

you go about implementing both mouse and keyboard doesn’t really

matter, as long as it is possible to interact with both.

You may notice some inconsistencies in ChromeVox support for

the live region used to present the messages in the example, more

specifically the aria-atomic attribute. Live regions will be

covered more thoroughly later in this unit.

Keyboard Interaction | 99

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=312

Predictability, Consistency, and Convention

Here we will introduce the basics of keyboard interaction, and we’ll

go into greater detail when we start looking more closely at

particular widgets and design patterns as they are introduced in the

chapters that follow.

As the heading for this section suggests, keyboard interaction

needs to be predictable, consistent, and should follow convention.

That is, users should have a good idea of the path that the focus

will follow (predictable). When navigating with the Tab key, that

path should be the same throughout an application or website

(consistent). Finally, it should be like it is in other applications,

websites, or operating systems (convention).

100 | Keyboard Interaction

Suggested Reading: Developing a Keyboard Interface

Take for example a combo box (aka, a select menu). Regardless of

the operating system being used, combo boxes work the same way.

If you are developing a widget out of divs that function like a combo

box, it should operate like a standard HTML combo box.

Conventional keyboard interaction for a combo box:

• Tab to navigate into the combo box

• While in focus, tab to navigate beyond the combo box

• While in focus, Shift + Tab to navigate before the combo box

• While in focus, Down Arrow to show next option

• While in focus, Up Arrow to show previous option

• While in focus, Alt + Down Arrow to display options list

• While options list is open, Alt + Up Arrow to close the options

list

• While options list is open, Esc to close the options list and

return to default state

• While an option is in focus, Enter to select that option

When developing a custom combobox — typically, a text box and

list of options — a grid, a tree, or a dialog are combined into a

functional unit that should operate like a standard HTML select

menu. Functionality in addition to that described above may be

added to the custom combobox, e.g., to add autocompletion. As

the user types letters into the text box, options beginning with the

string type are displayed below as a list or the first option with

those letters is displayed inline in the text box.

Try This: Using your keyboard, try the keyboard interactions

described above to confirm whether or not the combobox

functions in a conventional way. Try it with a few different

Keyboard Interaction | 101

browsers and notice any variations in how different browsers

handle combobox interaction.

An interactive or media element has been

excluded from this version of the text. You can

view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=312

Suggested Reading: For detailed discussion of combobox

design patterns, see: WAI-ARIA Authoring Practices 1.1

(Combo Boxes)

Toolkit: For a list of design patterns, and keyboard interaction

conventions, review the following widget development best

practices. Scan for now. They will be covered more

thoroughly in later chapters of the book.

• Combobox

• Grid

• Listbox

• Menu or menu bar

• Radiogroup

• Tabs

• Toolbar

• Tree View

102 | Keyboard Interaction

Application and Presentation
Roles

The application and presentation roles in WAI-ARIA change the way

assistive technologies interact with web content. Both have “use

with caution” warnings. Their use and where and when to use them

are described here.

Application Role

The application role is used when there is not a corresponding

widget interaction pattern available to provide semantics for a

custom widget.

Imagine, for instance, a file manager application embedded in a

web page, which does not have widget roles specifically defined. It

may have many of the functions a typical file manager might have on

a Windows, Mac, or Linux system. It might have the typical File, Edit,

and View menus that most applications have, including browsers.

Those menus in the file manager should function like these same

menus in other applications. When the application role is used in

a container containing the embedded file manager, keystrokes are

intercepted and repurposed to operate the file manager, instead of

the browser and the assistive technology.

When in the file manager application, this behaviour may be

desirable. But, defined with the application role, all of the standard

screen reader shortcut keys are also disabled, so the user is no

longer able to navigate the pages by headings, or landmarks, for

instance, while inside the application. This may be fine in such a

case because the screen reader user will likely temporarily want

Application and Presentation
Roles | 103

shortcut keys to file manager functions, and not those of the

browser or screen reader.

If, however, the application role is used to contain a carousel

widget, for example, then browser and assistive technology

functionality may be unnecessarily disabled, potentially creating

barriers. A carousel widget typically has limited functionality. For

example, carousels may contain scripted Arrow keys to move back

and forth between slides, between headings within each slide for

added structure, or link to another section of the site presented in a

slide. In such cases, screen reader users would be unable to navigate

through the slides by listing headings or links, using their screen

reader’s default heading and link list functionality. By removing the

application role, the scripted next/previous link, as well as the

heading and the links could be used to navigate the carousel.

The bottom line is to use the application role carefully. Be sure it

is not creating more barriers than it is intended to prevent.

Presentation Role

Much like the application role disables default keyboard

functionality, the presentation role (and its synonym

role="none"), theoretically, removes the default semantics from

children of the element it applies to.

So, for instance, if you have a list with role="presentation" ,

it should not announce as a list, and its list items should not

announce as list items. However, nested lists within those

suppressed list items will announce as usual.

There are a couple of intended exceptions where the presentation

role will not remove default semantics:

• When role="presentation" is not applied to elements

that have tab focus, such as links, form elements, and elements

that have tabindex defined, or

104 | Application and Presentation Roles

• Where an element has been modified with any of the 21 global

states or properties

Where role="presentation" is applied to a parent element,

all of its child elements should inherit that role, but not all of its

grandchildren. For example, if <ul role="presentation"> is

used then the semantics for each of its elements will be

ignored. But, if an contains a sublist, that list would be

announced as usual.

It should be noted that current support for the presentation role

is spotty across browsers and assistive technologies, and you are

likely to find it not all that useful if you’re trying to develop with

cross browser compatibility. Typically, tables, images, and headings

are affected by the presentation role, while other elements like

lists, forms, and links are not, or only partially affected. If you are

trying to hide elements completely from screen readers, you might

consider using either aria-hidden or CSS display:none .

Three common uses for role="presentation" include:

1. Hiding a decorative image. It is equivalent to giving the image

null alt text.

2. Suppressing table semantics for tables used for layout in

circumstances where the table semantics do not convey

meaningful relationships.

3. Eliminating semantics of intervening orphan elements in the

structure of a composite widget, such as a tablist, menu, or

tree as demonstrated in the example above.

Source: WAI-ARIA Authoring Best Practices

There are also a number of WAI-ARIA roles that act like the

presentation role, and these suppress the default semantics for the

elements to which they are applied. For instance, if a tablist
is created from a , and role="tab" is applied to each of

the list items within that , their default listitem role will

Application and Presentation Roles | 105

be replaced with the tab role, without the need to set them as

presentational.

The following JSFiddle examples have been created for cross

browser testing of the presentation role. Navigate through each

example with ChromeVox + Chrome. If you have them available, also

navigate them with JAWS + IE and NVDA + FF to understand the

varied support for the presentation role. Below, the fiddle is a listing

of support for current versions of these screen readers.

106 | Application and Presentation Roles

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=314

Application and Presentation Roles | 107

Screen Reader Output from the Above Demo

NVDA (2018.1.1) + Edge (41.16299.248.0)

By keyboard, only the link is announced. Mouseover, though, and all

elements are announced.

• Link: not announced

• List: not announced or keyboard focusable

• Headings: not announced or keyboard focusable

• Table: not announced or keyboard focusable

• Image: not announced or keyboard focusable

• Form: “Combo box opt three collapsed”

NVDA (2018.1.1) + FireFox (59.0.2)

• Link: announces as usual

• List: values announced but not bullets or the list itself

• Headings: announce as usual

• Table: not announced.

• Image: not announced

• Form: announces opts but not the combobox

JAWS (18) + Edge (41.16299.248.0)

• Link: focusable, but not announced

• List: not focusable, not announced

• Headings: does not announce first heading, but does announce

second heading

• Table: not announced

• Image: not announced

108 | Application and Presentation Roles

• Form: not focusable, not announced

ChromeVox (53.0.2784.5)

• Link: focusable, but not read (using Tab key) Announces as

usual when using CVOX + Arrows

• List: Skips over list (using Arrow key) except when link receives

focus first, then Arrow key announces the numbers in the list.

Announces numbers but not as a list when using CVOX +

Arrows

• Headings: Does not announce the first heading, but does

announce the second (Arrows and CVOX+Arrows)

• Table: not announced.

• Image: reads alt text “Ryerson Chang School” both Arrow and

CVOX + Arrow

• Form: focusable, not announced (using Tab key), Arrow keys

announces “Combobox. Opt 3, 3 of 3.”

Suggested Reading:

• WAI-ARIA Presentation Role

• PowerMapper: Screen Reader Compatibility (Updated

Dec 2017)

• Mozilla: ARIA Test Cases

Application and Presentation Roles | 109

Live Regions

Live regions are used to present changes in web content that occur

after a web page has loaded. Typical uses include presenting news

feeds, feedback and error messages, or live chat output to screen

readers, which would otherwise not know about this content

changing or being added to a web page already rendered. Live

regions can also be used to announce feedback and error messages

when a page loads, so screen reader users do not need to search

through a web page to find feedback. It reads automatically when a

page finishes loading.

Types of Live Regions

A typical live region can be created by adding aria-
live="polite" to any element in which content is updated after

a web page has loaded. The “polite” value indicates the priority

of the content being updated. In this case, a screen reader will

wait for a break in its audio output before announcing the change

that occurred. You may also use aria-live="assertive" to

interrupt whatever the screen reader is reading, and instead read

the changed content before continuing. Typically, “assertive” should

be avoided. Only use it in cases where critical information is being

updated, such as an error message or critical feedback.

Normally, aria-live would not be used to present feedback

or error messages, though it is possible. Instead role="alert" ,

introduced earlier, would be used. Using role="alert" creates

an assertive live region that interrupts a screen reader to present

its content. They can be used within rendered content to present

messages without reloading the page, or they can be used after a

page loads, to present the message before any of the other content

on the page is read.

110 | Live Regions

In addition to the commonly used role="alert" , there are

other less commonly used roles that also act as live regions. These

are:

• role=”log”

• role=”marquee”

• role=”timer”

• role=”status”

Here is the full list of live region attributes:

• aria-live: polite, assertive, off

• aria-relevant: additions, removals, text, all

• aria-atomic: true, false

• aria-busy: true, false

• role=”alert”

• role=”log”

• role=”marquee”

• role=”timer”

• role=”status”

Suggested Reading: More details on these other Live Region

Roles can be found in the WAI-ARIA 1.1 specification.

Care When Using Live Regions

There are a few cases where using a live region (aria-live) to

read changing content can create a barrier. Take, for instance, a

carousel that presents a series of panels that rotate at a particular

frequency. It can be helpful to set up a carousel as a live region, so

as each panel slides into view, a screen reader reads the content.

However, this behaviour could present a barrier, interfering with the

Live Regions | 111

screen reader when it is focused elsewhere, reading other content

on the page. If a live region is used with a carousel, it should only

be active when the carousel has focus. While typically a live region

is created as a static WAI-ARIA attribute, in this case, it should be

dynamically added on focus and dynamically removed on blur.

For carousels, it is also important to consider the rate at which

panels rotate, ensuring that screen readers have enough time to

read the content of the panel before rotating on to the next. This

timing can be difficult to predict. It depends on the amount of

content on each panel, which can vary significantly, and the rate at

which users have their reading rate set on their screen reader. One

solution to this issue may be to make the carousel manually rotate

when it has focus so users can proceed to the next panel only when

they are ready.

Another case where live regions can be problematic is with

timers. Timers counting by seconds can essentially render the rest

of the content on a page unusable for a screen reader user. As the

screen reader announces every second, it interrupts the reading of

the other content on a page. Timers that increment each minute, for

instance, would not have this problem.

Other places where live regions may be problematic are with very

active news or Twitter feeds. Though live regions can be useful

for this type of updating content, if there is a constant stream of

updates or updates occur frequently, screen reader users may have

difficulty comprehending other page content with the frequent

interruptions.

Try This: To experience the aggravation of a constantly

updating live region, open ChromeVox and give focus to the

timer below. In this case, the timer is in an iframe, so you can

simply set focus outside the iframe to stop it from reading.

If the timer were embedded in the content of the page itself,

you would not have this option, and the rest of the page would

112 | Live Regions

become unusable with a screen reader. The only option would

be to leave the page.

An interactive or media element has been

excluded from this version of the text. You can

view it online here:

Key Point: Be aware of potential barriers that can be created

when live regions are used with high-frequency content

updates.

Live Regions | 113

Activity 4: WAI-ARIA
Landmarks and Alerts

WAI-ARIA Landmarks and Alerts

Landmarks were added to the WAI-ARIA

specification as a way of providing easy navigation within a web

page for assistive technology users. Prior to landmarks, bypass links

were often used (and still are) that would allow a screen reader user

to jump from the top of a page, typically, to an anchor strategically

placed further down the page. In the first part of this activity you

will add a set of landmark roles to a website user interface (UI).

Live regions were introduced in WAI-ARIA as a way to present

changing content to assistive technology users. Feedback messages

are good candidates for a live region, so the content of a feedback

message is read to the user automatically when it appears without

the need to search the page to determine whether an action

completed successfully or, alternately, if an action produced an

error message. The WAI-ARIA “alert” role is a type of live region

ideal for presenting error or success feedback messages. In Part 2

of this activity, you’ll add role="alert" to the error messages

when the form in the landmarks.html file is submitted with missing

or invalid required fields, and when it is submitted successfully.

114 | Activity 4: WAI-ARIA Landmarks
and Alerts

In your copy of the activity files, open and edit the landmarks.html

file. When you have completed both parts of the activity, commit

the file back to your GitHub Pages repository, or upload it to the

location you have chosen to post your activity files for marking or

submit a GitHack URL.

Requirements

Part 1: Landmarks

Add the appropriate landmark roles to elements within the page. Be

sure all content within the page is contained within a landmarked

region and, depending on the type of content on the page, apply the

correct landmark for that type of content.

When you have added all the appropriate landmarks, test the file

with ChromeVox (keys: Cvox + L + semicolon) to be sure they are all

functioning properly.

Part 2: Live Error and Feedback Messages

The form on the page has three required fields. If you submit the

form without valid input for these fields, an error message is

generated below each field that has invalid input. Add

role="alert" to the first error message, so, when it appears, it

is automatically read by ChromeVox along with sending focus to

the first field in error so it can be corrected. Do the same for the

feedback message that appears when the form is submitted without

errors.

HINT: look in join.lib.js in the activity files.

Activity 4: WAI-ARIA Landmarks and Alerts | 115

Grading Rubric

Criteria Points

Content Contained:
All content is contained within a landmarked region.

2.0
pts

Correct Landmarks:
Appropriate landmarks have been used for each region.

3.0
pts

Messages Announced:
The first Error/Feedback message is announced when the form
is submitted with and without invalid input. When the first
required field is corrected, the next Error/Feedback message is
announced, and so on, so any field with invalid content is read
aloud.

4.0
pts

Landmarks Distinguishable:
Landmark regions with the same role are distinguishable from
each other.

1.0 pts

Total Points: 10.0

116 | Activity 4: WAI-ARIA Landmarks and Alerts

Self-Test 3

Answer the following questions to test your understanding of key

lessons in this unit. This quiz is not being marked.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=321

Self-Test 3 | 117

4. INTERACTIVE WAI-ARIA
(BASIC)

4. Interactive WAI-ARIA (Basic) | 119

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Identify elements of an accessible suggestion box

• Describe the function of accessible tooltips

• Identify the elements of an accessible progress bar

Activities

• Create the following accessible elements:

◦ Suggestion box

◦ Tooltips

◦ Progress bar

Objectives and Activities | 121

Toggle Buttons (Activity
Example)

The remainder of the book is hands-on. You’ll be taking inaccessible

widgets, like the example of toggle buttons described here, and

making them accessible by adding appropriate WAI-ARIA and

keyboard operability. The toggle buttons widget demonstrated here

is provided as an example for the ten widgets you will be working on

over the next three chapters, describing the Activity Elements you

will find in each exercise.

Activity Element: Following the short introduction to the

widget above, a list of the WAI-ARIA roles, states, and

properties used with the widget are listed.

Roles, states, and properties for toggle buttons

• role=”button”

• tabindex=”0″
• aria-label=”[button name]”

• aria-pressed=”[true|false]”

Activity Element: Where available, a Suggested Reading is

included that provides additional information about

122 | Toggle Buttons (Activity
Example)

accessibility features for the widget being discussed, often

linking to the W3C WAI-ARIA 1.1 Authoring Practice

documentation, or to a similar resource. These readings are

optional but recommended.

Suggested Reading: Read more about buttons in the WAI-

ARIA 1.1 Authoring Practices.

Activity Element: Each widget will have an inaccessible

JSFiddle version provided, like the one below. You can

examine the JavaScript and HTML to observe how the widget

was created. Under the Result tab, view and try out the

widget to see how it functions. CSS is also provided, though

you will not be working with CSS as part of the activities.

In the JSFiddle here, the accessibility elements are included

but commented out so you can see how the code snippets

below have been applied. In the activities that follow, the

accessibility elements will not be present. Your task will be

to apply the code snippets yourself to make the inaccessible

version provided in the activity file accessible.

At the top right, you may choose to “Edit in JSFiddle” and

test the code snippets that will be provided below, to

understand how they add accessibility to the widget. You

can start by uncommenting the accessibility elements for the

toggle buttons, and testing the resulting version with

ChromeVox.

The following JSFiddle presents a typical toggle button. Review the

JavaScript and HTML markup. Test the buttons present under the

Result tab with ChromeVox to understand how it functions without

any accessibility features added (if it functions at all). You can work

Toggle Buttons (Activity Example) | 123

in JSFiddle itself by clicking “Edit in JSFiddle” and copying the

accessibility/WAI-ARIA code described below to fix the accessibility

of the toggle buttons, before completing the Activity on the page

that follows (there is no activity that follows in this example case).

Key Point: The code that appears under the JavaScript tab is

not exactly as it appears in the activity files. The

$(document.ready{}) function at the top is copied from the

associated HTML file for the widget, and the contents of

ik_util.js have been appended, so the widget will function in

JSFiddle. You will not need to include these in the JavaScript

file from the activity files that you will be editing for each

widget.

124 | Toggle Buttons (Activity Example)

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=324

Activity Element: Following the JSFiddle will be a collection

Toggle Buttons (Activity Example) | 125

of code snippets hosted in PasteBin. These code snippets can

be applied to the code presented in the JSFiddle and applied

to the code in the activity files, which you will be submitting

for marking.

Add a tabindex to each button to make them keyboard focusable,

define the role="button" , and add a label with aria-
label="[button name]" and set the default state to “not

pressed” with aria-pressed="false" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=324

Add in equivalent keyboard access where mouse access is provided,

referencing the onActivate() function, described below, with

jQuery .on('keydown') .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

Set aria-pressed="[true|false]" for buttons when activated

or deactivated to announce the button’s state to screen readers.

126 | Toggle Buttons (Activity Example)

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=324

Adding Keyboard Operability

Keyboard access for the buttons is fairly simple, with no special key

press events needing to be defined.

Activity Element: When the WAI-ARIA 1.1 Authoring

Practices has a set of recommended keyboard interactions,

they will be reproduced here. Widgets will typically follow

the recommended practice, though in some cases keyboard

interaction may vary.

Toggle Buttons (Activity Example) | 127

Keyboard Interaction for Toggle Buttons

When the button has focus:

• Space: Activates the button.

• Enter: Activates the button.

• Following button activation, focus is set

depending on the type of action the button

performs. For example:

◦ If activating the button opens a dialog, the

focus moves inside the dialog (see dialog

pattern).

◦ If activating the button closes a dialog,

focus typically returns to the button that

opened the dialog unless the function

performed in the dialog context logically

leads to a different element. For example,

activating a cancel button in a dialog returns

focus to the button that opened the dialog.

However, if the dialog were confirming the

action of deleting the page from which it

was opened, the focus would logically move

to a new context.

◦ If activating the button does not dismiss

the current context, then focus typically

remains on the button after activation, e.g.,

an Apply or Recalculate button.

◦ If the button action indicates a context

change, such as move to next step in a

128 | Toggle Buttons (Activity Example)

wizard or add another search criteria, then

it is often appropriate to move focus to the

starting point for that action.

◦ If the button is activated with a shortcut

key, the focus usually remains in the context

from which the shortcut key was activated.

For example, if Alt + U were assigned to an

“Up” button that moves the currently

focused item in a list one position higher in

the list, pressing Alt + U when the focus is in

the list would not move the focus from the

list.

Source: W3C WAI-ARIA 1.1 Authoring Practices

Activity Element: Though this widget requires no keyboard

interaction beyond that provided in ik_utils.js to handle

space bar and Enter keys, other widgets will have a custom

function provided here that defines possible keyboard

interactions for those widgets. In most cases, that code can

be copied as is into the widget’s JavaScript file.

No added keyboard interaction is required for the toggle buttons

beyond the standard Space bar and Enter key defined in the

ik_utils.js file. Reference to these key events is added to the

onActivate() function.

Toggle Buttons (Activity Example) | 129

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=324

130 | Toggle Buttons (Activity Example)

Accessible Toggle Buttons in Action

Activity Element: Each widget will have a short video of it

interacting with ChromeVox. When completing the activities,

aim to have your activity submission function as presented in

the video.

The buttons are accessed initially with the Tab key, and the Tab key

is used to move between buttons. The Space bar or Enter keys are

used to activate and deactivate buttons. Aim to have the widget you

edit in the associated activity function like that presented in the

video (there is no associated activity for this example).

Video: Accessible Toggle Buttons

Toggle Buttons (Activity Example) | 131

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=324

132 | Toggle Buttons (Activity Example)

Suggestion Boxes

A suggestion box (aka, combo box or autocomplete box) is a type

of selection menu that helps users enter a correct choice. They are

typically made up of a text entry field and a list of choices based on

a number of characters entered into the text field. In the example

provided here, entering a few characters brings up a list of countries

that contain those characters.

Because the text entry field is a standard form text input field,

it will be accessible by default. No additional coding is required to

make it accessible. What needs the most attention is the list of

choices, which needs to announce itself when it appears and needs

to be keyboard navigable.

WAI-ARIA roles, states, and properties used in a
suggestion box

• role=’region’

• aria-live=’polite’

• aria-describedby='[id of instructions div]’

Suggested Reading: For details on constructing accessible

suggestion boxes, refer to: WAI-ARIA Best Practices: Combo

Box.

The following JSFiddle presents a typical suggestion box. Review

the JavaScript and HTML markup, and test the suggestion box

presented under the Result tab with ChromeVox to understand how

it functions without any accessibility features added. You can work

Suggestion Boxes | 133

in JSFiddle itself by clicking “Edit in JSFiddle”, copying the

accessibility/WAI-ARIA code described below to fix the accessibility

of the suggestion box, before completing Activity 5, on the page that

follows.

134 | Suggestion Boxes

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

Define some instructions to make it clear there will be suggestions

appearing when text is entered into the text input field.

Suggestion Boxes | 135

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

When the suggestion box receives focus, generate the instructions

for it by adding the notify() function to the onFocus()
function to produce a live region with the instruction text. This

instruction text is then read automatically when a screen reader

encounters the suggestion box text field.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

Within the init() function, create a <div> to use as a live

region, adding aria-live="polite" to announce the list usage

instructions defined above when the text field receives focus. Also,

give it a role="region" so it can be found in the landmarks list.

136 | Suggestion Boxes

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

Provide additional instructions when the suggestion box is

populated, adding to the getSuggestions() function.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

Adding Keyboard Operability

WAI-ARIA best practices defines all recommended suggestion box

keyboard functionality, listed below. In our example, only the

required keyboard events are included.

Suggestion Box Keyboard Interaction

When focus is in the textbox:

Suggestion Boxes | 137

• Down Arrow: If the popup is available, moves

focus into the popup:

◦ If the autocomplete behaviour

automatically selected a suggestion before

Down Arrow was pressed, focus is placed on

the suggestion following the automatically

selected suggestion.

◦ Otherwise, places focus on the first

focusable element in the popup.

• Up Arrow (Optional): If the popup is available,

places focus on the last focusable element in the

popup.

• Esc: Dismisses the popup if it is visible.

Optionally, clears the textbox.

• Enter: If an autocomplete suggestion is

automatically selected, accepts the suggestion

either by placing the input cursor at the end of the

accepted value in the textbox or by performing a

default action on the value. For example, in a

messaging application, the default action may be

to add the accepted value to a list of message

recipients and then clear the textbox so the user

can add another recipient.

• Printable Characters: Type characters in the

textbox. Note that some implementations may

regard certain characters as invalid and prevent

their input.

• Standard single line text editing keys

appropriate for the device platform (see note

below).

138 | Suggestion Boxes

• Alt+Down Arrow (Optional): If the popup is

available but not displayed, displays the popup

without moving focus.

• Alt+Up Arrow (Optional): If the popup is

displayed:

◦ If the popup contains focus, returns focus

to the textbox.

◦ Closes the popup.

Note: Standard single line text editing keys

appropriate for the device platform:

1. include keys for input, cursor movement,

selection, and text manipulation.

2. Standard key assignments for editing

functions depend on the device operating

system.

3. The most robust approach for providing

text editing functions is to rely on browsers,

which supply them for HTML inputs with

type text and for elements with the

contenteditable HTML attribute.

4. IMPORTANT: Be sure that JavaScript does

not interfere with browser-provided text

editing functions by capturing key events

for the keys used to perform them.

Source: W3C WAI-ARIA 1.1 Best Practices

Suggestion Boxes | 139

The most significant effort in making the suggestion box accessible

is adding keyboard operability. In our case, we’ll add Up and Down

Arrow operability to the list box. Create a switch that captures the

keypress event. If it’s a Down Arrow, select the next item down

in the list. If it’s an Up Arrow, select the previous item. If it’s any

character key, enter the value in the text field. Add this to the

onKeyUp() function, while integrating the existing functionality in

the function into the default for the switch statement.

140 | Suggestion Boxes

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

Suggestion Boxes | 141

Accessible Suggestion Box in Action

Watch the following video to see how ChromeVox interacts with

a suggestion box. When the suggestion box receives focus,

instructions are read. When the second letter is typed into the text

field a list of suggestions appears below. Additional instructions are

provided on how to make a selection from the list. Arrow keys are

used to navigate through the suggestions, and the Enter key is used

to select one of them. Aim to have the suggestion box you update in

Activity 5 on the following page operate and announce like the one

in the video.

Video: Accessible Suggest Box

142 | Suggestion Boxes

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=330

Suggestion Boxes | 143

Activity 5: Accessible
Suggestion Box

Accessible Suggestion Box

Based on the Suggestion Box details on

the previous page, apply what you have learned to the associated

activity files to make the suggestion box provided accessible.

Files for this activity include:

• /suggest.html

• /assets/ik_suggest.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the suggestion box by applying the highlighted code

to the /assets/ik_suggest.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Test your updated suggestion box with ChromeVox to ensure

144 | Activity 5: Accessible
Suggestion Box

each element described in the marking rubric below is functioning

as suggested.

Requirements

Apply your changes and test to be sure your suggestion box

functions as described. Then, submit the URL of your suggest.html

file located on your GitHub site, on the web server you are using to

host your copy of the activity files, or a GitHack URL.

Grading Rubric

Criteria Points

Initial Instructions:
Instructions are provided when the country field receives focus. 2.0 pts

Announce Suggestions Present:
The suggestion list is announced when suggestions are
available.

2.0 pts

Suggestion Instructions
Instructions are provided when suggestions are available. 1.0 pts

Keyboard Access:
A country selection can be made using only the keyboard

5.0
pts

Total Points: 10.0

Activity 5: Accessible Suggestion Box | 145

Tooltips

A tooltip is typically used to display some information about its

owning element when a user hovers a mouse pointer over or gives

keyboard focus to an element. Tooltips might include a definition

for a word, perhaps full wording for an acronym or abbreviation, or

maybe instructions on how to operate a tool or widget. There are

many possibilities.

Tooltips are an enhancement for the default “title text” standard

with HTML. They provide much more flexibility in the presentation

and types of information that can be presented than a standard title

text tooltip.

WAI-ARIA roles, states, and properties used in a
tooltip

• role="tooltip"

• aria-hidden:[true|false]

• aria-live="polite"

• tabindex = [0|-1]

Suggested Reading: For details on constructing accessible

tooltips, refer to: WAI-ARIA Best Practices: Tooltips.

The following JSFiddle presents a typical tooltip. Review the

JavaScript and HTML markup. Test the tooltip presented under

the Result tab with ChromeVox to understand how it functions

without any accessibility features added. You can work in JSFiddle

by clicking “Edit in JSFiddle”, copying the accessibility/WAI-ARIA

146 | Tooltips

code described below to fix the accessibility of the tooltip before

completing Activity 6 on the page that follows.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Tooltips | 147

The first thing to add to the init() function, where the tooltip

 element is defined, are the WAI-ARIA attributes. First,

define the tooltip with role="tooltip" . Hide the tooltip by

default with aria-hidden="true" . Also, add a live region with

aria-live="polite" , so screen readers automatically read the

tooltip when it appears. Note, the WAI-ARIA 1.1 best practices

recommend using aria-describedby within the owning element

to reference the content of a tooltip, which does not announce as

expected with current versions of Chrome. Instead, we use aria-
live , which announces correctly across all current browsers.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Next, add keyboard focus to the element the tooltip belongs to with

tabindex="0" , and add focus to .on('mouseover') , so both

a mouse hover and keyboard focus open the tooltip.

148 | Tooltips

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Also, further down in the owning element’s definition, add aria-
hidden="false" so the hidden-by-default tooltip becomes visible

when the mouse hover or keyboard focus occurs.

An interactive or media element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Also, added here is aria-hidden="true" to be sure the tooltip

is hidden from screen readers, should a mouseout event close the

tooltip, adding it to .on(mouseout) chained to the element

($elem) definition.

An interactive or media element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Adding Keyboard Operability

WAI-ARIA best practices defines keyboard interaction for a tooltip

as follows:

Tooltips | 149

Recommended Keyboard Interaction for
a Tooltip

Tooltip widgets do not receive focus. A hover that

contains focusable elements can be made using a non-

modal dialog.

• Esc: Dismisses the Tooltip.

Note:

1. Focus stays on the triggering element

while the tooltip is displayed.

2. If the tooltip is invoked when the trigger

element receives focus, then it is dismissed

when it no longer has focus (onBlur). If the

tooltip is invoked with mouseIn, then it is

dismissed with mouseOut.

Source: W3C WAI-ARIA Best Practices 1.1

Keyboard operability for a tooltip or, rather, the owning element is

relatively simple. As a keyboard equivalent for the

.on(mouseout) described above, .on(blur) is chained to the

$elem element and within it aria-hidden="true" hides the

tooltip again, if the mouse pointer is not over the element.

An interactive or media element has been excluded from this

150 | Tooltips

version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Also, if the Esc key is used, add aria-hidden="true" to hide the

tooltip, even if the mouse is hovering, or the owning element has

focus.

An interactive or media element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

Accessible Tooltip in Action

Watch the following video to see how ChromeVox interacts with a

tooltip. The Tab key is used to navigate to the first tooltip, which

opens a live region when its content is read aloud. Pressing the Tab

key once again, move focus to the text input field, and a second

tooltip opens and its content is read aloud. Aim to have the tooltips

you update in Activity 6 on the following page operate and

announce like the one in the video.

Video: Accessible Tooltips

Tooltips | 151

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=336

152 | Tooltips

Activity 6: Accessible
Tooltips

Accessible Tooltips

Based on the Tooltip details on the

previous page, apply what you have learned to the associated

activity files to make the tooltips there accessible.

Files for this activity include:

• /tooltip.html

• /assets/ik_tooltip.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the tooltips by applying the highlighted code to the

/assets/ik_tooltip.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Test your updated tooltips with ChromeVox to ensure each

Activity 6: Accessible Tooltips | 153

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to be sure your

tooltips function as described, submit the URL to your tooltip.html

file on your GitHub Pages site, to the file on the web server you are

using to host your copy of the activity files, or to a Githack URL.

Grading Rubric

Criteria Points

Tooltips Open:
Tooltips open when their owning element receives keyboard
focus or mouseover.

3.0 pts

Tooltips Read:
Tooltips read aloud when their owning element receives
keyboard focus or mouseover.

3.0 pts

Tooltips Hides:
Tooltips hide when focus is removed or on mouseout. 2.0 pts

Tooltips Escape:
Tooltips hide when the Esc key is pressed. 2.0 pts

Total Points: 10.0

154 | Activity 6: Accessible Tooltips

Progress Bars

Progress bars are typically implemented when a user has to wait for

a process to complete, whether that may be waiting for an upload

to finish, data to be compiled, a report to be generated, or any other

process that takes more than a few seconds to complete.

For most users, there is generally a visual representation of

progress, such as a status bar or a circular progress indicator. As a

process progresses, a viewer can estimate when it will be complete.

For blind users, however, the visual presentation provides no useful

information, so they will need to be able to retrieve the current

value some other way.

Roles, states, and properties in a progress bar

• role="progressbar"

• tabindex = [0|-1]

• aria-valuenow = "0"

• aria-valuemin = "0"

• aria-valuemax = "[max value define in default

options]"

• aria-describedby = "[instruction ID]"

• role = "region"

• aria-live = "assertive"

• aria-atomic = "additions"

• aria-hidden = "[true|false]"

Suggested Reading: For more about accessible progress

bars, see WAI-ARIA 1.1: Progressbar

Progress Bars | 155

The following JSFiddle presents a typical progress bar widget.

Review the JavaScript and HTML markup and test the progress bar

presented under the result tab with ChromeVox to understand how

it functions without any accessibility features added. You can work

in JSFiddle itself by clicking the Edit in “JSFiddle” at the top, right-

hand side. Copy the accessibility/WAI-ARIA code described below

to fix the accessibility of the progress bar before completing Activity

7 on the page that follows.

An interactive or media element has been excluded from this

version of the text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

WAI-ARIA to Make the Progress Bar Accessible

Key Point: For the exercise in Activity 7: Accessible Progress

Bar, aim to have the progress bar function in ChromeVox,

but, be aware that solutions described here will not work in

other screen readers.

In this example, we have added WAI-ARIA to a progress bar, but due

to limited support for the WAI-ARIA progressbar attributes by

screen readers other than ChromeVox, there is also a workaround

using the jQuery .data() function to output the current value

for users of JAWS or NVDA screen readers. You can refer to the

ik_progressbar_data.js file for the workaround. However,

for Activity 7, be sure to start from the ik_progressbar.js file for the

assignment submission. To experiment with the .data() version

of the progress bar JavaScript file, you can adjust the reference to

the file in the progressbar.html file.

First, as is typical, create some instructions describing how to

156 | Progress Bars

operate the progress bar with a screen reader and keyboard and add

them to the default options.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

Update the init() function to add the required WAI-ARIA. First

set tabindex="-1" to be sure the bar itself is not keyboard

focusable by default, and associate the bar with the instructions

so when the bar does receive focus the instructions are read. Set

some default values for aria-valuemin , aria-valuenow , and

aria-valuemax . Also, add keyboard access to the bar with an

on(keydown) reference to the onKeyDown() function,

described below.

Add to the notifications <div> live region attributes so when

Space/Enter are pressed and the progress percent is added, or if

“Loading Complete!” is added, they are read aloud by the screen

reader.

Finally, create the <div> with instructions referenced by its ID

with aria-describedby added to the bar <div> and hide it by

default.

Progress Bars | 157

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

158 | Progress Bars

Replace the data(value) in the getValue() function, used

to retrieve the current value of the progress bar when the Space

bar or Enter keys are pressed, with an aria-valuenow attribute.

This replaces the .data(value) needed to function with screen

readers other than ChromeVox.

Progress Bars | 159

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

In the setValue() function, add in a tabindex="-1" to remove

keyboard focus from the bar when the max value is reached and

to add the “Loading Complete” message to the notification <div> .

Finally, add either the current value of the progress on keypress

or the max value (if progress is complete) to an aria-valuenow
attribute. This replaces the .data() work-around, which is

needed to function with screen readers other than ChromeVox.

160 | Progress Bars

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

Progress Bars | 161

Adding Keyboard Operability

Keyboard access for a progress bar is relatively simple. There is

typically no mouse or keyboard interaction. One generally waits

and, when progress is complete, continues on with some other

action. For screen reader users, however, they will need to be able

to get the current progress value using a keypress.

To allow the current value to be retrieved, set up the Enter and

Space bar keyboard controls with the onKeyDown() function. This

also triggers the notify() function. When one of those keys is

pressed, it outputs the value to the notification <div> that we have

set up as a live region.

162 | Progress Bars

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

Accessible Progress Bar in Action

Watch the following video to see how ChromeVox interacts with a

progress bar. When the Run Demo button is pressed, instructions

are provided on how to announce progress. Pressing the Space

bar or Enter key announces the percentage progress at any given

Progress Bars | 163

moment. When progress has finished, “Loading Complete” is

announced. Aim to have the progress bar you update in the activity

on the following page operate and announce like the one in the

video.

Video: Accessible Progress Bar

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=341

164 | Progress Bars

Activity 7: Accessible
Progress Bar

Accessible Progress Bar

Based on the Progress Bar details on the previous page, apply what

you have learned to the associated activity files to make the

progress bar there accessible.

Files for this activity include:

• /progressbar.html

• /assets/ik_progressbar.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the progress bar by applying the highlighted code to

the /assets/ik_progressbar.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Activity 7: Accessible Progress
Bar | 165

Test your updated progress bar with ChromeVox to ensure each

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to be sure your

progress bar functions as described, submit the URL to your

progressbar.html file on your GitHub Pages site, to the file on the

web server you are using to host your copy of the activity files, or to

a GitHack URL.

Grading Rubric

Criteria

Instructions Provided:
When the progress bar begins running, instructions are provided on how to announce progr

Keyboard Announce Progress:
The keyboard can be used to announce progress percentage.

Announce Complete:
When progress finishes, Loading Complete is announced.

Total Points:

166 | Activity 7: Accessible Progress Bar

5. INTERACTIVE WAI-ARIA
(INTERMEDIATE)

5. Interactive WAI-ARIA
(Intermediate) | 167

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Recognize the elements of an accessible slider

• Identify what makes an accordion accessible

• Identify the elements of an accessible tab panel

• Explain the challenges of making a carousel accessible

Activities

• Create the following accessible elements:

◦ Slider

◦ Accordion

◦ Tab panel

◦ Carousel

Objectives and Activities | 169

Sliders

Sliders typically allow users to select a value between minimum and

maximum values by dragging a slider thumb along a slider bar or

track.

WAI-ARIA roles, states, and properties used in a
slider

• tabindex="[0 | -1]"

• role="slider"

• aria-valuemin="[number]"

• aria-valuemax="[number]"

• aria-valuenow="[number]"

Suggested Reading: Additional information about creating

accessible sliders can be found in the WAI-ARIA Best

Practices.

The following JSFiddle presents a typical slider widget. Review the

JavaScript and HTML markup. Test the slider presented under the

Result tab with ChromeVox to understand how it functions without

any accessibility features added. You can work in JSFiddle itself by

clicking the “Edit in JSFiddle” at the top, right-hand side, copying

the accessibility/WAI-ARIA code described below to fix the

accessibility of the slider before completing Activity 8 on the page

that follows.

170 | Sliders

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Define some instructions that describe how to use the slider for

screen reader users.

Sliders | 171

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Add a tabindex="0" to make the slider thumb keyboard

focusable. Assign a role="slider" to the text box so it

announces as a slider instead of a text entry field. Set aria-
valuemin , aria-valuemax , and aria-valuenow values, and

reference the instructions with aria-describedby . Using

.on('keydown') reference the onKeyDown function to add

keyboard operability to the slider.

172 | Sliders

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Create a <div> for the screen reader instructions.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Dynamically set the value of aria-valuenow based on the value

at which the slider thumb is located.

Sliders | 173

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Remove keyboard access from the original text field.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Adding Keyboard Operability

WAI-ARIA authoring practices defines recommended keyboard

functionality for a slider, listed below.

174 | Sliders

Keyboard Interaction for a Slider

• Right Arrow: Increase the value of the slider by

one step.

• Up Arrow: Increase the value of the slider by

one step.

• Left Arrow: Decrease the value of the slider by

one step.

• Down Arrow: Decrease the value of the slider by

one step.

• Home: Set the slider to the first allowed value in

its range.

• End: Set the slider to the last allowed value in its

range.

• Page Up (Optional): Increment the slider by an

amount larger than the step change made by Up

Arrow.

• Page Down (Optional): Decrement the slider by

an amount larger than the step change made by

Down Arrow.

Note:

1. Focus is placed on the slider (the visual

object that the mouse user would move,

also known as the thumb).

2. In some circumstances, reversing the

Sliders | 175

direction of the value change for the keys

specified above (e.g., having Up Arrow

decrease the value) could create a more

intuitive experience.

Source: W3C WAI-ARIA 1.1 Best Practices

Add keyboard event handling to our slider widget. In our case, we

will add Left and Right Arrow controls for moving the slider thumb

along the slider bar, and End and Home controls for moving the

slider thumb between the start and end of the slider bar.

176 | Sliders

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Sliders | 177

Accessible Slider in Action

Watch the following video of ChromeVox interacting with a

slider. The Arrow keys are used to move the slider thumb along the

slider bar, and the Home and End keys are used to move the slider

thumb between the start and the end of the slider bar. You may

notice that ChromeVox interprets “min” as “minute” rather than min

and max that define the range along the slider bar. Aim to have

the slider you update in the activity that follows on the next page

operate and announce like the one in the video.

Video: Accessible Slider

178 | Sliders

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=349

Sliders | 179

Activity 8: Accessible Slider

Accessible Slider

Based on the Slider details on the previous page, apply what you

have learned to the associated activity files to make the slider there

accessible.

Files for this activity include:

• /slider.html

• /assets/ik_slider.js

Use the code surrounding the highlighted solutions on the previous

page as a guide to find where the fixes should be applied. Repair

the accessibility of the slider by applying the highlighted code to the

/assets/ik_slider.js file.

Note: While we suggest using the highlighted solutions we’ve

provided, you are free to come up with your own solutions as long

as they produce the expected results listed in the marking rubric

below.

Test your updated slider with ChromeVox to ensure each element

described in the marking rubric below is functioning as suggested.

180 | Activity 8: Accessible Slider

Requirements

When you have applied your changes and tested to be sure your

slider functions as described, submit the URL to your slider.html file

on your GitHub Pages site, to the file on the web server you are

using to host your copy of the activity files, or to a GitHack URL.

Grading Rubric

Criteria

Slider Focusable:
Slider thumb is keyboard focusable.

Keyboard Operable:
Slider thumb moves using Left and Right Arrow keys, and the Home and End keys.

Min/Max Values Announced:
Minimum and maximum values are announced.

Value Announced:
When the slider moves, its new value is announced.

Total Points:

Activity 8: Accessible Slider | 181

Accordions

Accordion widgets can come in single or multi-select formats, in

which one or multiple panels can be opened at once, respectively.

They are typically used to reduce the space that content occupies

and to reduce scrolling. Accordions are made up of Accordion
Headers and Accordion Panels. The accordion headers control the

display of their associated accordion panel.

The WAI-ARIA roles, states, and properties used in
an accordion

• aria-multiselectable ="(true | false)"

• role="heading"

• role="button"

• aria-controls="[panel id]"

• tabindex="0"

• role="region"

• aria-hidden= "(true | false)"

• aria-expanded= "(true | false)"

Suggested Reading: For details on constructing accessible

accordions, refer to: WAI-ARIA Authoring Practices:

Accordion

The following JSFiddle presents a typical accordion widget. Review

the JavaScript and HTML markup. Test the accordion presented

under the Result tab with ChromeVox to understand how it

182 | Accordions

functions without any accessibility features added. You can work

in JSFiddle itself by clicking “Edit in JSFiddle”, copying the

accessibility/WAI-ARIA code described below to fix the accessibility

of the accordion before completing Activity 9 on the page that

follows.

Accordions | 183

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

First, add the accordion to the landmarked regions by assigning

role="region" to the opening <DL> element when the

184 | Accordions

accordion is initialized, adding the region role to the init()
function.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

Next, add the aria-multiselectable attribute to the <DL> ,

which will be dynamically set to true or false based on plugin

configuration settings. This lets a user know that more than one

accordion panel can be opened when set to TRUE or only a single

panel when set to FALSE. Refer to the $(document).ready block

in the HTML, where the assignment takes place.

An interactive or media element has been excluded

The semantics of the children of the <DL> element, which was

assigned role="presentation" , will also have their definition

list semantics removed. Add the accordion semantics

role="heading" to assign a heading role to the <DT> elements.

The aria-level attribute might be used to implement nested

accordion panels, but for the purpose of this book a simplified

version is sufficient.

An interactive or media element has been excluded

from this version of the text. You can view it online

Add a <div> inside the header (i.e., DT) and define its role as a

button. The button is given an aria-controls attribute to define

which of the accordion panels it controls. By default the toggle

state is set to false with aria-expanded="false" to be updated

dynamically when the button is clicked or key pressed. Finally add

tabindex="0" to the button (<div>) to make it keyboard

focusable.

Accordions | 185

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

The tabindex will make the button focusable, but it will not make

it clickable. The .on() jQuery function adds a click event to the

button, but a keypress event must also be added. Adding

.on('keydown') activates the onKeyDown function, defined

below, so the accordion headers operate with both a mouse click

and a keypress.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

In the togglePanel() function, before autoCollapse() , add

in the toggle to add and update the aria-expanded attribute for

the panel headers, based on whether the associated panel is visible

or not.

186 | Accordions

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

Within the autoCollapse() function, toggle aria-
expanded="false" and aria-hidden="true" for all accordion

tabs that are not the current one. This ensures only one panel is

open at a time.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

Finally, the accordion panel semantics are added, defining the

<DD> elements that had its semantics removed when

role="presentation" was added to the parent <DL> . Panels

are given a generic role="region" to make the panel browsable

in the landmarks list, set to be hidden by default with aria-
hidden="true" so all panels are closed when the page loads.

Further, tabindex="0" is also added to make the panels keyboard

focusable so the content of the panel is read as the user navigates to

them.

Accordions | 187

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

Adding Keyboard Operability

WAI-ARIA best practices defines all recommended accordion

keyboard functionality, listed below. In our example, only the

required keyboard events are included.

Keyboard Interaction for Accordions

• Enter or Space:

◦ When focus is on the accordion header

for a collapsed panel, expands the

associated panel. If the implementation

allows only one panel to be expanded, and if

another panel is expanded, collapses that

188 | Accordions

panel.

◦ When focus is on the accordion header

for an expanded panel, collapses the panel if

the implementation supports collapsing.

Some implementations require one panel to

be expanded at all times and allow only one

panel to be expanded; so they do not

support a collapse function.

• Down Arrow (Optional): If focus is on an

accordion header, moves focus to the next

accordion header. If focus is on the last accordion

header, either does nothing or moves focus to the

first accordion header.

• Up Arrow (Optional): If focus is on an accordion

header, moves focus to the previous accordion

header. If focus is on the first accordion header,

either does nothing or moves focus to the last

accordion header.

• Home (Optional): When focus is on an accordion

header, moves focus to the first accordion header.

• End (Optional): When focus is on an accordion

header, moves focus to the last accordion header.

• Ctrl+Page Down (Optional): If focus is inside an

accordion panel or on an accordion header, moves

focus to the next accordion header. If focus is in

the last accordion header or panel, either does

nothing or moves focus to the first accordion

header.

• Ctrl+Page Up (Optional): If focus is inside an

accordion panel, moves focus to the header for

Accordions | 189

that panel. If focus is on an accordion header,

moves focus to the previous accordion header. If

focus is on the first accordion header, either does

nothing or moves focus to the last accordion

header.

Source: WAI-ARIA Accordion Design Patterns

The following onKeyDown function has been created to add

keyboard operability to the header elements of the accordion,

allowing both Space bar and Enter keys to operate the toggles (i.e.,

headers) that open and close panels, and the Arrow keys to move

between the accordion headers. By default, users can navigate

between headers, and between headers and panels using the Tab

key.

190 | Accordions

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

Accordions | 191

Accessible Accordion in Action

Watch the following video to see how ChromeVox interacts with

an accordion. The Tab key is used to navigate into the accordions,

move between accordion headers, and move between accordion

headers and panels. Arrow keys can also be used to move between

accordion headers, but not from headers to an associated panel.

Aim to have the accordion you update in the activity on the

following page operate and announce like the one in the video.

Video: Accessible Accordions

192 | Accordions

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=353

Accordions | 193

Activity 9: Accessible
Accordion

Accessible Accordion

Based on the Accordion details on the previous page, apply what you

have learned to the associated activity files to make the accordion

there accessible.

Files for this activity include:

• /accordion.html

• /assets/ik_accordion.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the accordion by applying the highlighted code to

the /assets/ik_accordion.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

194 | Activity 9: Accessible Accordion

Test your updated accordion with ChromeVox to ensure each

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to be sure your

accordion functions as described, submit the URL to your

accordion.html file on your GitHub Pages site, to the file on the

web server you are using to host your copy of the activity files, or a

GitHack URL.

Grading Rubric

Criteria

Header Focus:
Accordion headers are keyboard focusable.

Headers as Buttons:
Accordion headers are announced as buttons instead of list items.

Open Panels:
Accordion headers open panels with a click or key press.

Expand/Collapse:
Accordions announce expanded when a panel is opened and collapsed when closed.

Panels Focusable:
Accordion panels are focusable with a Tab key press when opened.

Header Navigation:
Navigation between accordion headers with Up and Down Arrow keys, and the Tab key.

Total Points:

Activity 9: Accessible Accordion | 195

Tab Panels

Tab panels, much like accordions, are often used to conserve space

and reduce scrolling. They are typically made up of a tablist that

contains a series of tabs, each tab controlling the display of a panel.

As each tab is activated, its associated panel is displayed and other

panels are hidden. When a tab is selected, it is highlighted to

indicate which tab and panel are active.

WAI-ARIA roles, states, and properties used in a tab
panel

• role="tablist"

• role="tabpanel"

• role="tab"

• aria-hidden="[true|false]"

• tabindex = [0 | -1]

• aria-controls="[panel id]"

• aria-selected="[true|false]"

Suggested Reading: Additional information about creating

accessible tab panels can be found in the WAI-ARIA

Authoring Practices.

The following JSFiddle presents a typical tab panel widget. Review

the JavaScript and HTML markup. Test the tab panel presented

under the Result tab with ChromeVox to understand how it

functions without any accessibility features added. You can work

in JSFiddle itself by clicking “Edit in JSFiddle”, copying the

196 | Tab Panels

accessibility/WAI-ARIA code described below to fix the accessibility

of the tab panel before completing Activity 10 on the page that

follows.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

Tab Panels | 197

In our case, we are generating the tabs for each child <div>
defined in the HTML, though tabs and tab panels could be static

HTML. The tablist is made up of a and child elements.

We assign role="tablist" to the to remove its list

semantics and replace it with tab panel semantics.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

Next, we add WAI-ARIA to the panels, assigning

role="tabpanel" to each of the original <div> elements, hide

them by default with aria-hidden="true" , and finally adding

tabindex="0" to make the panels keyboard focusable.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

The tabs themselves are now defined, replacing the list item

semantics with tab semantics adding role="tab" to each of the

 elements generated. We also need to define which tab

controls which tabpanel, dynamically generating aria-
controls="[panel_id]" for each of the tabs.

198 | Tab Panels

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

When a tab is selected, we want to remove selection from other

tabs with aria-selected="false" , and remove keyboard access

temporarily by assigning tabindex="-1" to the unselected tabs,

so that that tabpanel becomes next in the tab order, and users can

navigate directly from the tab to the panel without having to pass

through the other tabs in the tablist.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

Likewise, when a tab is selected we assign aria-
selected="true" so screen readers announce the selected tab,

we add tabindex="0" as the roving tabindex to make that tab

focusable.

Tab Panels | 199

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

As the tabs change, hide all the panels with aria-
hidden="true" so screen readers do not see them, then open

the panel the current tab controls with aria-hidden="false" so

screen readers can see the active panel. These are added to the end

of the selectTab() function.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

Adding Keyboard Operability

W3C describes authoring practices for tab panel keyboard

interactions as follows.

200 | Tab Panels

Keyboard Interaction for Tab Panels

For the tab list:

• Tab: When focus moves into the tab list, places

focus on the active tab element. When the tab

list contains the focus, moves focus to the next

element in the page tab sequence outside the

tablist, which is typically either the first focusable

element inside the tab panel or the tab panel

itself.

• When focus is on a tab element in a horizontal

tab list:

◦ Left Arrow: moves focus to the previous

tab. If focus is on the first tab, moves focus

to the last tab. Optionally, activates the

newly focused tab (See note below).

◦ Right Arrow: Moves focus to the next tab.

If focus is on the last tab element, moves

focus to the first tab. Optionally, activates

the newly focused tab (See note below).

• When focus is on a tab in a tablist with either

horizontal or vertical orientation:

◦ Space or Enter: Activates the tab if it was

not activated automatically on focus.

◦ Home (Optional): Moves focus to the first

tab

Tab Panels | 201

◦ End (Optional): Moves focus to the last

tab.

◦ Shift + F10: If the tab has an associated

pop-up menu, opens the menu.

◦ Delete (Optional): If deletion is allowed,

deletes (closes) the current tab element and

its associated tab panel. If any tabs remain,

sets focus to the tab following the tab that

was closed and activates the newly focused

tab. Alternatively, or in addition, the delete

function is available in a context menu.

Note:

1. It is recommended that tabs activate

automatically when they receive focus as

long as their associated tab panels are

displayed without noticeable latency. This

typically requires tab panel content to be

preloaded. Otherwise, automatic activation

slows focus movement, which significantly

hampers users’ ability to navigate efficiently

across the tab list. For additional guidance,

see 5.4 Deciding When to Make Selection

Automatically Follow Focus.

2. If the tabs in a tab list are arranged

vertically:

1. Down Arrow performs as Right

202 | Tab Panels

Arrow is described above.

2. Up Arrow performs as Left Arrow is

described above.

3. If the tab list is horizontal, it does not

listen for Down Arrow or Up Arrow so those

keys can provide their normal browser

scrolling functions even when focus is

inside the tab list.

As usual, the tab panel needs to be keyboard operable to be

accessible to screen readers. The onKeyDown() function is added

to the functions, to add arrow key navigation between tabs, and

between tabs and panels. Tab navigation and Enter keys are enabled

by default and do not need to be defined here.

Tab Panels | 203

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

204 | Tab Panels

The onKeyDown function is then added to each tab, referenced

with jQuery’s .on('keydown') function, added to the init()
function’s $tab definition.

Now, with keyboard access and WAI-ARIA added to define the

semantics of the tab panel, it should be fully functional for screen

readers.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

Accessible Tab Panel in Action

Watch the following video showing ChromeVox interacting with a

tab panel. The Tab key is used to navigate into the tab panel and to

the first tab. The arrow keys are used to move between tabs and,

when on a tab, the Tab key is used to navigate to the associated

panel. While on a panel, Shift + Tab is used to return to the tablist.

There might also be Up and Down arrows enabled to move between

Tab Panels | 205

tabs and panels, though we have not enabled them here. Aim to have

the tab panel you update in the activity coming up on the next page

operate and announce itself like the one in the video.

Video: Accessible Tab Panel

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=357

206 | Tab Panels

Activity 10: Accessible Tab
Panel

Accessible Tab Panel

Based on the Tab Panel details on the previous page, apply what you

have learned to the associated activity files to make the tab panel

there accessible.

Files for this activity include:

• /tabs.html

• /assets/ik_tabs.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the tab panel by applying the highlighted code to the

/assets/ik_tabs.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Activity 10: Accessible Tab
Panel | 207

Test your updated tab panel with ChromeVox to be sure each

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to ensure your tab

panel functions as described, submit the URL to your tabs.html file

on your GitHub Pages site, to the file on the web server you are

using to host your copy of the activity files, or a GitHack URL.

Grading Rubric

Criteria Points

List to Tab Semantics:
List semantics are replaced with tab panel semantics.

2.0
pts

Tab Position:
Focus position in the tablist is announced. 1.0 pts

Tab Focus opens Panel:
When a tab is in focus, its associated panel displays. 1.0 pts

Arrow Key Between Tabs:
Arrow keys can be used to navigate between tabs.

2.0
pts

Tab Key from Tab to Panel:
Tab key can be used to move from a selected tab directly to its
associated panel, Shift+Tab to move back to tabs.

2.0
pts

Panels Focusable:
Panels are keyboard focusable.

2.0
pts

Total Points: 10.0

208 | Activity 10: Accessible Tab Panel

Carousels

Carousels are typically used to present a series of panels or images

that rotate at a particular frequency.

WAI-ARIA roles, states, and properties used in
carousels

• role="region"

• aria-live="polite"

• tabindex="0"

• aria-describedby="[id of div with instructions]"

• aria-hidden="(true|false)"

Suggested Reading: The Carousel Tutorial from the W3C

provides additional details on constructing accessible

carousels.

The following JSFiddle presents a typical carousel widget. Review

the JavaScript and HTML markup. Test the carousel presented

under the Result tab with ChromeVox to understand how it

functions without any accessibility features added. You can work in

JSFiddle itself by clicking “Edit in JSFiddle.” Copy the accessibility/

WAI-ARIA code described below to fix the accessibility of the

accordion before completing Activity 11 on the page that follows.

Carousels | 209

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

Though instructions are not always required, they can be helpful

for screen reader users when there is non-standard keyboard

210 | Carousels

navigation. In our case, we’ll add a few words and assign them to

the “instructions” variable in the default settings of the init()
function for the carousel. The instructions will be rendered in its

own <div> and referenced with aria-describedby a little later

in the code.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

We’ll define a few attributes when the carousel is initialized: give

it a role="region" to add it to the landmarks, add a tabindex
to make it keyboard focusable, and reference the ID of the

instructions <div> with aria-describedby . Add keyboard

operability with .on('keydown') and a reference to the

onKeyDown function, described below.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

Screen reader users will not need the Next/Previous controls, so

hide them. They will be using the Arrow keys instead, defined in the

onKeyDown function further below.

Carousels | 211

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

Hide images from screen readers. Notice that the alt text for

the images are defined in the HTML but left empty so it is not read

in this case. Screen readers will read the figcaptions .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

Add screen reader instructions by generating a <div> that

contains the instruction text defined earlier and hide the <div>
by default. The instructions are read when the carousel receives

focus, and the aria-describedby attribute is dynamically added

to reference the instructions.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

212 | Carousels

Add an aria-live attribute to the stopTimer function. Set its

value to polite so content updating in the live region announces

when a screen reader is not reading elsewhere on the page. The

content of the visible carousel panel is read automatically when it is

in focus, manually navigating between panels with the Arrow keys.

An interactive or media element has been excluded

from this version of the text. You can view it online

Remove the live region when focus on the carousel is removed

in the startTimer function. By doing so, the live region stops

reading when the timer is reactivated onblur , and it does not

interfere with the screen reader reading elsewhere on the page.

An interactive or media element has been excluded

from this version of the text. You can view it online

Hide the active slide from screen readers with aria-
hidden="true" . Then, make the next slide visible to screen

readers with aria-hidden="false" in the gotoSlide
function.

Carousels | 213

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

Adding Keyboard Operability

Add keyboard operations for the carousel, pulling keyboard events

from ik_utils.js to use Left and Right arrows for moving between

panels in the carousel, and the Esc key to exit the carousel and

resume automatic rotation.

214 | Carousels

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

Carousels | 215

Accessible Carousel in Action

Watch the following video to see how ChromeVox interacts with

a carousel. The carousel rotates automatically when focus is

elsewhere on the page. When it receives focus, rotation stops, and

navigation instructions are read. The Left and Right arrow keys are

used to move manually between panels in the carousel while it has

focus. The contents of each panel are read through a live region,

dynamically added to the main container <div> when the carousel

has focus. Using the Tab key while the carousel has focus sends

focus to any focusable element within the panel that is in view, a link

to the person who shared the photo in this case. Aim to have the

carousel you update in the activity on the following page operate

and announce like the one in the video.

Video: Accessible Carousel

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=362

216 | Carousels

Activity 11: Accessible
Carousel

Accessible Carousel

Based on the Carousel details on the

previous page, apply what you have learned to the associated

activity files to make the carousel there accessible.

Files for this activity include:

• /carousel.html

• /assets/ik_carousel.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the carousel by applying the highlighted code to the

/assets/ik_carousel.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Test your updated carousel with ChromeVox to ensure each

Activity 11: Accessible Carousel | 217

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to ensure your

carousel functions as described, submit the URL to your

carousel.html file on your GitHub Pages site, to the file on the web

server you are using to host your copy of the activity files, or a

GitHack URL.

Grading Rubric

Criteria

Instructions Provided
Screen reader instructions are provided when carousel receives focus.

Carousel Focusable
Carousel panels are keyboard focusable.

Carousel Navigation
Navigate between panels with the Left and Right Arrow keys.

Panels Read Aloud
While the carousel has focus, each panel reads aloud when it comes into view.

Manual while in Focus
When in focus, or while a mouse pointer is hovering over the carousel, panels rotate manuall

Rotate when No Focus
When the carousel is not in focus, panels rotate automatically.

Total Points:

218 | Activity 11: Accessible Carousel

6. INTERACTIVE WAI-ARIA
(ADVANCED)

6. Interactive WAI-ARIA
(Advanced) | 219

Objectives and Activities

Objectives

By the end of this unit, you will be able to:

• Describe the elements of an accessible menu bar

• Identify tree menu accessibility features

• Explain how an accessible sortable list functions

Activities

• Create the following accessible elements:

◦ Menu bar

◦ Tree menu

◦ Sortable list

Objectives and Activities | 221

Menu Bars

Menu bars are typically presented horizontally across the top of

a website or web application. They contain links to key areas of

the website or application. They function as toggles that open

submenus or function as both links and toggles. Menu bars remain

in view across the entire website or application.

Roles, states, and properties used in a menu bar

• aria-hidden = [true|false]

• role = "menubar"

• role = "menu"

• role = "menuitem"

• aria-labelledby = "[instruction div id]"

• aria-label = [link text]

• tabindex = [0 | -1]

• aria-haspopup = "true"

• aria-expanded = "[true|false]"

• aria-selected = "[true|false]"

Suggested Reading: For more about accessible menus, see

WAI-ARIA Best Practice 1.1: Menus or Menu Bar.

The following JSFiddle presents a typical menu bar widget with a

variety of sub menus. Review the JavaScript and HTML markup.

Test the menu bar presented under the Result tab with ChromeVox

to understand how it functions without any accessibility features

added. You can work in JSFiddle itself by clicking the “Edit in

222 | Menu Bars

JSFiddle” link at the top, right-hand side, copying the accessibility/

WAI-ARIA code described below to fix the accessibility of the menu

bar before completing Activity 12 on the page that follows.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

First, provide some instructions on how to use the menu with a

keyboard and add them to the default options.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Hide the instructions from screen readers until needed, adding

aria-hidden="true" to the instructions <div> defined when

the menu is initialized.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Add role="menubar" to the top level in the menu. Make

Menu Bars | 223

that keyboard focusable with tabindex="0" , so it reads

the instructions while in focus and referenced with aria-
labelledby .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

For all the menu items in the menu bar that have submenus,

add role="menu" to their and hide them by default using

aria-hidden="true" . This can be located after the

$elem.find('ul:eq(0)') block presented immediately above.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Hide the links in the menu items from screen readers by default

using tabindex="-1" and setting aria-hidden="true" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

224 | Menu Bars

Set up the menu items throughout the menu using

role="menuitem". Also, remove keyboard access by default with

tabindex="-1" . Next, label each menu item with the text of the

associated link using aria-label="[$link.text]" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

For each of the menu items that has a submenu, add aria-
haspopup="true" to announce the presence of the submenu, and

set its default state to “collapsed” by adding aria-
expanded="false" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

When a menu item is marked selected, also add aria-
selected="true" and add keyboard access back to the menu

item with tabindex="0" .

An interactive or media element has been excluded

from this version of the text. You can view it online

Menu Bars | 225

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Add keyboard access back to menu items using tabindex="0" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Reference the keyboard access class, where mouse events are

defined in the onKeyDown function, described below.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

In the showSubMenu function, add aria-expanded="true"
submenus when they are expanded, remove keyboard access from

the submenu container with tabindex="-1" . Then, make the

submenu visible with aria-hidden="false" .

226 | Menu Bars

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

In the hideSubMenu function, set aria-expanded="false" ,

hide submenus with aria-hidden="true" , and remove keyboard

access with tabindex="-1" when a submenu is closed.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

When the collapseAll function is called, to collapse any open

menus, reverse all attributes defining the element as open, reverting

to aria-hidden="true" , aria-expanded="false" and re-

adding keyboard access with tabindex="0" so it can be opened

again.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Menu Bars | 227

Adding Keyboard Operability

Menu bar keyboard functionality can be complex, particularly with

large menus with multiple levels of submenus, and they can include

redundant keys that perform the same function. The W3C defines

suggested keyboard interaction for a menu bar as follows:

Menu Bar Keyboard Interaction

This description of keyboard behaviours assumes the

following:

1. A horizontal menubar containing several

menuitem elements.

2. All items in the menubar have child submenus

that contain multiple vertically arranged items.

3. Some of the menuitem elements in the

submenus have child submenus with items that

are also vertically arranged.

When reading the following descriptions, also keep in

mind these items:

1. Focusable elements, which may have role

menuitem , menuitemradio , or

menuitemcheckbox , are referred to as items.

2. If a behaviour applies to only certain types of

items, e.g., menuitem elements, the specific role

name is used.

228 | Menu Bars

3. Submenus, also known as pop-up menus, are

elements with role menu .

4. Except where noted, menus opened from a

menu button behave the same as menus opened

from a menu bar.

• When a menu opens, or when a menubar
receives focus, keyboard focus is placed on the

first item. All items are focusable as described in

5.6 Keyboard Navigation Inside Components.

• Enter:

◦ When focus is on a menuitem that has a

submenu, opens the submenu and places

focus on its first item.

◦ Otherwise, activates the item and closes

the menu.

• Space:

◦ (Optional): When focus is on a

menuitemcheckbox , changes the state

without closing the menu.

◦ (Optional): When focus is on a

menuitemradio that is not checked,

without closing the menu, checks the

focused menuitemradio and unchecks

any other checked menuitemradio
element in the same group.

◦ (Optional): When focus is on a menuitem
that has a submenu, opens the submenu and

places focus on its first item.

Menu Bars | 229

◦ (Optional): When focus is on a menuitem
that does not have a submenu, activates the

menuitem and closes the menu.

• Down Arrow:

◦ When focus is on a menuitem in a

menubar , opens its submenu and places

focus on the first item in the submenu.

◦ When focus is in a menu , moves focus to

the next item, optionally wrapping from the

last to the first.

• Up Arrow:

◦ When focus is in a menu , moves focus to

the previous item, optionally wrapping from

the first to the last.

◦ (Optional): When focus is on a menuitem
in a menubar , opens its submenu and

places focus on the last item in the

submenu.

• Right Arrow:

◦ When focus is in a menubar , moves

focus to the next item, optionally wrapping

from the last to the first.

◦ When focus is in a menu and on a

menuitem that has a submenu, opens the

submenu and places focus on its first item.

◦ When focus is in a menu and on an item

that does not have a submenu, performs the

230 | Menu Bars

following 3 actions:

1. Closes the submenu and any parent

menus.

2. Moves focus to the next menuitem
in the menubar .

3. Either: (Recommended) opens the

submenu of that menuitem without

moving focus into the submenu, or

opens the submenu of that

menuitem and places focus on the

first item in the submenu.

Note that if the menubar were not

present, e.g., the menus were opened from a

menubutton, Right Arrow would not do

anything when focus is on an item that does

not have a submenu.

• Left Arrow:

◦ When focus is in a menubar , moves

focus to the previous item, optionally

wrapping from the last to the first.

◦ When focus is in a submenu of an item in

a menu , closes the submenu and returns

focus to the parent menuitem .

◦ When focus is in a submenu of an item in

a menubar , performs the following 3

actions:

1. Closes the submenu.

2. Moves focus to the previous

Menu Bars | 231

menuitem in the menubar .

3. Either: (Recommended) opens the

submenu of that menuitem without

moving focus into the submenu, or

opens the submenu of that

menuitem and places focus on the

first item in the submenu.

• Home: If arrow key wrapping is not supported,

moves focus to the first item in the current menu
or menubar .

• End: If arrow key wrapping is not supported,

moves focus to the last item in the current menu
or menubar .

• Any key that corresponds to a printable

character (Optional): Move focus to the next menu

item in the current menu whose label begins with

that printable character.

• Escape: Close the menu that contains focus and

return focus to the element or context, e.g., menu

button or parent menuitem , from which the

menu was opened.

• Tab: Moves focus to the next element in the tab

sequence, and if the item that had focus is not in a

menubar , closes its menu and all open parent

menu containers.

• Shift + Tab: Moves focus to the previous element

in the tab sequence, and if the item that had focus

is not in a menubar , closes its menu and all open

parent menu containers.

232 | Menu Bars

Note:

1. Disabled menu items are focusable but

cannot be activated.

2. A separator in a menu is not focusable or

interactive.

3. If a menu is opened or a menu bar

receives focus as a result of a context

action, Esc or Enter may return focus to the

invoking context. For example, a rich text

editor may have a menu bar that receives

focus when a shortcut key, e.g., Alt+F10, is

pressed while editing. In this case, pressing

Esc or activating a command from the menu

may return focus to the editor.

4. Although it is recommended that authors

avoid doing so, some implementations of

navigation menu bars may have menuitem
elements that both perform a function and

open a submenu. In such implementations,

Enter and Space bar perform a navigation

function, e.g., load new content, while Down

Arrow, in a horizontal menu bar, opens the

submenu associated with that same

menuitem .

5. When items in a menubar are arranged

vertically and items in menu containers are

arranged horizontally:

Menu Bars | 233

1. Down Arrow performs as Right

Arrow is described above, and vice

versa.

2. Up Arrow performs as Left Arrow is

described above, and vice versa.

Source: W3C WAI-ARIA 1.1 Authoring Practices

Here we have implemented a subset of the keyboard interaction

W3C recommends in an onKeyDown() function that is called when

event handlers are set up for menu items. These keys include Left
and Right arrows, Up and Down arrows, the Space bar and Enter
keys, and Tab and Esc keys. Copy the following function into the

ik_menu.js file, near the end, to add keyboard operability to the

menu.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Accessible Menu Bar in Action

Watch the following video showing ChromeVox interacting with a

234 | Menu Bars

menu bar. The Tab key is used to navigate into the menu bar, to

the first menu item, and to exit the menu bar. Left and Right arrow

keys are used to move across the top level menu items. Up and

Down arrows are used to move into and out of a submenu and to

move between menu items in a submenu. The Space bar or Enter

key are used to activate a menu item. The Esc key closes the current

submenu. Aim to have the menu bar you update in the activity on

the next page operate and announce itself like the one in the video.

Video: Accessible Menu Bar

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=368

Menu Bars | 235

Activity 12: Accessible Menu
Bar

Accessible Menu Bar

Based on the Menu bar details on the

previous page, apply what you have learned to the associated

activity files to make the menu there accessible.

Files for this activity include:

• /menu.html

• /assets/ik_menu.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the menu bar by applying the highlighted code to the

/assets/ik_menu.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Test your updated menu bar with ChromeVox to ensure each

236 | Activity 12: Accessible Menu
Bar

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to be sure your

menu bar functions as described, submit the URL to your menu.html

file on your GitHub Pages site, to the file on the web server you are

using to host your copy of the activity files, or a GitHack URL.

Grading Rubric

Criteria Points

Instructions Provided:
Instructions are announced on how to use the menu bar with a
keyboard, when the menu bar first receives focus.

1.0 pts

Menu Bar Semantics:
List item semantics are replaced with menu semantics.

2.0
pts

Submenus Announced:
When a menu item with a submenu receives focus, the presence
of a submenu is announced.

2.0
pts

Focus Control:
Only elements of the menu bar that are in view are able to
receive focus.

2.0
pts

Keyboard Operable:
As described in Adding Keyboard Operability for a menu bar, the
menu bar functions using a keyboard (and mouse).

3.0
pts

Total Points: 10.0

Activity 12: Accessible Menu Bar | 237

Tree Menus

Tree menus often have the same underlying HTML structure as a

menu bar, but rather than being arranged in a horizontal layout,

they tend to be arranged vertically.

WAI-ARIA roles, states, and properties used in a tree
menu

• tabindex = [0 | -1]

• aria-labelledby = [instruction div id | title div id]

• aria-hidden = [true | false]

• role = "tree"

• role = "treeitem"

• role = "presentation"

• aria-level = [number of parent ULs]

• aria-setsize = [number of LIs in a level]

• aria-posinset = [position of each LI in a set]

• aria-expanded = [true | false]

• aria-selected = [true | false]

Suggested Reading: For more about accessible tree menus,

see WAI-ARIA 1.1 Authoring Practices 1.1: Tree View

The following JSFiddle presents a typical tree menu widget with

a few submenus. Review the JavaScript and HTML markup. Test

the tree menu presented under the Result tab with ChromeVox

to understand how it functions without any accessibility features

added. You can work in JSFiddle itself by clicking “Edit in JSFiddle” at

238 | Tree Menus

the top, right-hand side, copying the accessibility/WAI-ARIA code

described below to fix the accessibility of the tree menu before

completing Activity 13 on the page that follows.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Tree Menus | 239

First, define instructions on using the tree menu with a keyboard.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function add keyboard focus to the tree

container by applying tabindex="0" to it, and label the container

with the instructions created above, which gets read by screen

readers when the menu initially receives focus.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function, hide the instructions <div> from

screen readers by default by setting aria-hidden="true" when

the tree menu is initialized.

240 | Tree Menus

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function replace the unordered list

semantics with tree menu semantics using role="tree" , and give

it a title using aria-labelledby to reference the title defined in

the default options.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function, define menu items with

role="treeitem" , remove all keyboard access by default with

tabindex="-1" , set the number of levels in the tree based on

the number of parent ULs with aria-level=[number of ULs] ,

set the number of tree items on a given level with aria-
setsize="[number of LIs in a UL]" , and finally define

the position of each tree item within a level using aria-
posinset="[child LI index]" .

Tree Menus | 241

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function, if a tree item has a submenu UL

that has been opened, set aria-expanded="true" , otherwise set

aria-expanded="false" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function, for each tree item use the text of

the associated span element as its label. To ensure both the label

242 | Tree Menus

and the contents of the span element are not both read, assign

role="presentation" to the span .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the init() function, where mouse onclick
functionality is used, provide equivalent keydown functionality,

here referencing the onKeyDown function, shown below, that

defines the keys to operate the menu.

An interactive or media element has been excluded

from this version of the text. You can view it online

Within the init() function, right after adding keydown
operability, make the first item in the tree menu focusable by adding

tabindex="0" to the first li .

Tree Menus | 243

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Within the selectItem() function, set up a roving tabindex,

while at the same time applying aria-selected=[true |
false] when tree items receive or lose focus.

244 | Tree Menus

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Tree Menus | 245

In the toggleSubmenu() function, announce the state of

submenus to the screen reader by toggling the aria-
expanded=[true | false] attribute when a menu is opened or

closed.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Adding Keyboard Operability

Much like the menu bar described in the previous activity, keyboard

operability for a tree menu can be complex, with various operations

using multiple key strokes to perform the same function. W3C

246 | Tree Menus

describes potential keyboard operation in the WAI-ARIA Authoring

Practices 1.1, reproduced below.

Tree Menu Keyboard Interaction

For a vertically oriented tree:

• When a single-select tree receives focus:

◦ If none of the nodes are selected before

the tree receives focus, focus is set on the

first node.

◦ If a node is selected before the tree

receives focus, focus is set on the selected

node.

• When a multi-select tree receives focus:

◦ If none of the nodes are selected before

the tree receives focus, focus is set on the

first node.

◦ If one or more nodes are selected before

the tree receives focus, focus is set on the

first selected node.

• Right Arrow:

◦ When focus is on a closed node, opens the

node; focus does not move.

◦ When focus is on a open node, moves

focus to the first child node.

Tree Menus | 247

◦ When focus is on an end node, does

nothing.

• Left Arrow:

◦ When focus is on an open node, closes the

node.

◦ When focus is on a child node that is also

either an end node or a closed node, moves

focus to its parent node.

◦ When focus is on a root node that is also

either an end node or a closed node, does

nothing.

• Down Arrow: Moves focus to the next node that

is focusable without opening or closing a node.

• Up Arrow: Moves focus to the previous node

that is focusable without opening or closing a

node.

• Home: Moves focus to the first node in the tree

without opening or closing a node.

• End: Moves focus to the last node in the tree

that is focusable without opening a node.

• Enter: Activates a node, i.e., performs its default

action. For parent nodes, one possible default

action is to open or close the node. In single-

select trees where selection does not follow focus

(see note below), the default action is typically to

select the focused node.

• Type-ahead is recommended for all trees,

especially for trees with more than 7 root nodes:

248 | Tree Menus

◦ Type a character: focus moves to the next

node with a name that starts with the typed

character.

◦ Type multiple characters in rapid

succession: focus moves to the next node

with a name that starts with the string of

characters typed.

• * (Optional): Expands all siblings that are at the

same level as the current node.

• Selection in multi-select trees: Authors may

implement either of two interaction models to

support multiple selection: a recommended model

that does not require the user to hold a modifier

key, such as Shift or Ctrl, while navigating the list

or an alternative model that does require modifier

keys to be held while navigating in order to avoid

losing selection states.

◦ Recommended selection model – holding

a modifier key while moving focus is not

necessary:

▪ Space: Toggles the selection state of

the focused node.

▪ Shift + Down Arrow (Optional):

Moves focus to and toggles the

selection state of the next node.

▪ Shift + Up Arrow (Optional): Moves

focus to and toggles the selection

state of the previous node.

▪ Shift + Space (Optional): Selects

Tree Menus | 249

contiguous nodes from the last

selected node to the current node.

▪ Ctrl + Shift + Home (Optional):

Selects the node with focus and all

nodes up to the first node.

▪ Ctrl + Shift + End (Optional): Selects

the node with focus and all nodes

down to the last node.

▪ Ctrl + A (Optional): Selects all nodes

in the tree. Optionally, if all nodes are

selected, it can also unselect all nodes.

◦ Alternative selection model – moving

focus without holding the Shift or Ctrl

modifier unselects all selected nodes except

for the focused node:

▪ Shift + Down Arrow: Moves focus to

and toggles the selection state of the

next node.

▪ Shift + Up Arrow: Moves focus to

and toggles the selection state of the

previous node.

▪ Ctrl + Down Arrow: Without

changing the selection state, moves

focus to the next node.

▪ Ctrl + Up Arrow: Without changing

the selection state, moves focus to the

previous node.

▪ Ctrl + Space: Toggles the selection

state of the focused node.

▪ Shift + Space (Optional): Selects

250 | Tree Menus

contiguous nodes from the most

recently selected node to the current

node.

▪ Ctrl + Shift + Home (Optional):

Selects the node with focus and all

nodes up to the first node.

▪ Ctrl + Shift + End (Optional): Selects

the node with focus and all nodes

down to the last node.

▪ Ctrl + A (Optional): Selects all nodes

in the tree. Optionally, if all nodes are

selected, it can also unselect all nodes.

Note:

1. DOM focus (the active element) is

functionally distinct from the selected state.

For more details, see this description of

differences between focus and selection.

2. The tree role supports the aria-

activedescendant property, which provides

an alternative to moving DOM focus among

treeitem elements when implementing

keyboard navigation. For details, see

Managing Focus in Composites Using aria-

activedescendant.

3. In a single-select tree, moving focus may

optionally unselect the previously selected

node and select the newly focused node.

Tree Menus | 251

This model of selection is known as

“selection follows focus”. Having selection

follow focus can be very helpful in some

circumstances and can severely degrade

accessibility in others. For additional

guidance, see Deciding When to Make

Selection Automatically Follow Focus.

4. If selecting or unselecting all nodes is an

important function, implementing separate

controls for these actions, such as buttons

for “Select All” and “Unselect All”,

significantly improves accessibility.

5. If the nodes in a tree are arranged

horizontally:

1. Down Arrow performs as Right

Arrow is described above and vice

versa.

2. Up Arrow performs as Left Arrow is

described above and vice versa.

Source: WAI-ARIA Authoring Practices 1.1

For the tree menu created here, we’ve added in basic keyboard

operability. Keyboard operation includes: Up and Down, and Left

and Right Arrows for navigating within the tree, and the Enter or

Space bar keys to toggle submenus open or closed. The Tab key

by default enters and exits the tree menu and does not need to be

defined as part of the keyboard operability of the tree menu.

252 | Tree Menus

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

Tree Menus | 253

254 | Tree Menus

Accessible Tree Menu in Action

Watch the following video showing ChromeVox interacting with a

tree menu. The Tab key is used to navigate into the tree menu, to

the first tree item, and to exit the tree menu. The Up and Down

arrows are used to move between tree items. The Space bar or Enter

key are used to expand and collapse a tree item with a submenu.

When a submenu is opened, focus moves to the first tree item in the

menu. Aim to have the tree menu you update in Activity 13 operate

and announce itself like the one in the video.

Video: Accessible Tree Menu

Tree Menus | 255

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=374

256 | Tree Menus

Activity 13: Accessible Tree
Navigation

Based on the Tree Menu details on the

previous page, apply what you have

learned to the associated activity files to

make the tree menu there accessible.

Files for this activity include:

• /tree.html

• /assets/ik_treemenu.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied. Repair the

accessibility of the tree menu by applying the highlighted code to

the /assets/ik_treemenu.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Test your updated tree menu with ChromeVox to ensure each

element described in the marking rubric below is functioning as

suggested.

Requirements

When you have applied your changes and tested to be sure your

tree menu functions as described, submit the URL to your tree.html

file on your GitHub Pages site, to the file on the web server you are

using to host your copy of the activity files, or a GitHack URL.

Activity 13: Accessible Tree
Navigation | 257

Grading Rubric

Criteria Points

Instructions Provided:
When the tree menu receives focus, instructions are
announced on how to use the menu with a keyboard.

1.0 pts

Tree Menu Semantics:
When navigating through the tree menu with a keyboard,
elements are announced with tree menu semantics.

2.0 pts

Tree Submenus:
When a tree menu item with a submenu receive focus, the
submenu state is announced as expanded when open or
collapsed when closed.

2.0 pts

Focus Control:
Only elements of the tree menu that are in view are able to
receive focus.

2.0 pts

Keyboard Operable:
Tree menu functions with a keyboard as described in Adding
Keyboard Operability for tree menus.

3.0 pts

Total Points: 10.0

258 | Activity 13: Accessible Tree Navigation

Sortable Lists

One of the more common types of widgets that present barriers for

screen reader users are drag and drop features. These can be set up

in a grid, where draggable items can be rearranged horizontally or

vertically by clicking on an item and moving it to a new position in

the grid. A drag and drop may also be a sortable list, where items

in a list can be dragged vertically to perhaps position the more

important list items near the top of the list. For drag and drop

elements you may come across on the Web today, the vast majority

only function with a mouse, making them inaccessible to many

people who rely on a keyboard to navigate. Here, we will look at a

sortable list, and the WAI-ARIA and associated keyboard operability

required to make that list sortable while using only a screen reader

and a keyboard.

Role, states, and properties used in a sortable list

• role = “list”

• role = “listitem”

• tabindex = “[0 | -1]”

• aria-labelledby = “[instruction div id]”

• aria-hidden = “[true | false]”

Suggested Reading: 4 Major Patterns for Accessible Drag and

Drop

The following JSFiddle presents a typical sortable list widget. Review

the JavaScript and HTML markup, and test the list presented under

Sortable Lists | 259

the Result tab with ChromeVox to understand how it functions

without any accessibility features added. You can work in JSFiddle

itself by clicking “Edit in JSFiddle” at the top, right-hand side,

copying the accessibility/WAI-ARIA code described below to fix the

accessibility of the menu bar before completing Activity 14 on the

page that follows.

260 | Sortable Lists

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

As usual, create instructions on using the sortable list with a

keyboard. In this case, we also want to determine which modifier

Sortable Lists | 261

key to include in the instructions. For Mac, it will be the Command

key, otherwise it will be the Control key. Here, the standard

accesskey key commands will also work as the modifier and can

potentially be described as well (e.g., Ctrl + Alt on Mac, or Ctrl on

Windows).

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

Assign a redundant role="list" to the opening ul , make the

ul keyboard focusable, and attach the instruction with aria-
labelledby="[instruction div id]" so keyboard navigation

details are announced when the list initially receives focus while

using a screen reader.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

Within the init() function, generate the <div> that will

contain the instructions, and add aria-hidden="true" to hide it

from screen readers by default.

262 | Sortable Lists

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

In the items section of the init() function, where draggable

is defined for each item in the list, add a redundant

role="listitem" , and generate a label for each item that

describes the list item’s current position and that that list item is

“movable.” Finally, set tabindex="0" on the first list item, and

tabindex="-1" on the other list items in order to ensure a list

item is focusable by default.

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

Where the draggable attributes are defined near the end of the

init() function, attach a keydown reference to the

onKeyDown() function to make the list draggable with a keyboard.

Sortable Lists | 263

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

In the resetNumbering() function, update the label for moved

items to reflect their new position in the list using aria-label =
"[new position]" .

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

Adding Keyboard Operability

Keyboard operation for a drag and drop sortable list is relatively

simple, compared to the menu bar and tree menu. Essentially, only

the Up and Down arrow keys are needed. The standard operating

system modifier keys, typically used with tabindex (e.g., Crtl + Alt,

Alt, or Ctrl), function as the modifier keys when using them in

addition to the Up and Down arrows to grab, drag, and drop a list

item.

The onKeyDown() function for the sortable list presented

below, defines just up and down arrow key operability, along with

264 | Sortable Lists

a roving tabindex. W3C has not yet created a best practice for

authoring keyboard interaction for drag and drop elements.

Sortable Lists | 265

An interactive or media element has been excluded

from this version of the text. You can view it online

here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

266 | Sortable Lists

Sortable List in Action

Watch the following video showing ChromeVox interacting with a

sortable list. The Tab key is used to navigate into the list and to exit

the list. The Up and Down arrows are used to move between list

items. On a Mac, the Command key plus Up or Down arrow, selects

a list item and moves it to a new location. On windows the Ctrl key

is used instead of Command, along with the Up or Down arrow keys

to move list items. Aim to have the sortable list you update in the

activity on the next page operate and announce itself like the one in

the video.

Video: Accessible Sortable List

Sortable Lists | 267

A YouTube element has been excluded from this version of the

text. You can view it online here:

https://pressbooks.library.ryerson.ca/wafd/?p=379

268 | Sortable Lists

Activity 14: Accessible
Sortable List

Based on the Sortable List details on the

previous page, apply what you have learned to the associated

activity files to make the sortable list there accessible.

Files for this activity include:

• /sortable.html

• /assets/ik_sortable.js

Use the surroundings of the highlighted code on the previous page

as a guide to find where the fixes should be applied, Repair the

accessibility of the sortable list by applying the highlighted code to

the /assets/ik_sortable.js file.

Note: While we suggest using the highlighted code we’ve

provided, you are free to come up with your own solutions provided

they produce the expected results listed in the marking rubric

below.

Test your updated sortable list with ChromeVox to ensure each

element described in the marking rubric below is functioning as

suggested.

Activity 14: Accessible Sortable
List | 269

Requirements

When you have applied your changes and tested to be sure your

sortable list functions as described, submit the URL to your

sortable.html file on your GitHub Pages site, to the file on the web

server you are using to host your copy of the activity files, or a

GitHack URL.

Grading Rubric

Criteria Points

Instructions Provided:
Instructions are announced on using the sortable list with a
keyboard when it first receives focus.

1.0 pts

Movable List Items:
When navigating through list items, their position is announced
along with an indication they can be moved.

2.0
pts

List Items are Sortable:
Using the keyboard operation described in Adding Keyboard
Operability for sortable lists, list items can be moved without
using a mouse.

3.0
pts

Moved position:
When a list items is moved, its new position is announced.

4.0
pts

Total Points: 10.0

270 | Activity 14: Accessible Sortable List

Book Recap

Chapter 1 Summary

Chapter 1 focused on getting started and providing the background

information on the WAI-ARIA specification. The jQuery plugin being

developed throughout the book was also introduced, and access to

the inaccessible versions of the widgets that make up the plugin,

also known as the activity files, was provided on GitHub. You were

also introduced to a MooTools WAI-ARIA library, and another jQuery

library that can also be used to quickly add WAI-ARIA to interactive

web elements.

Though the book is focused on jQuery, the application of WAI-

ARIA with other JavaScript frameworks will be quite similar.

Developers are encouraged to apply what they learn via jQuery to

other libraries they may be working with.

In Chapter 1, you were also introduced to the ChromeVox screen

reader. Though not a screen reader people who are blind would

often use, ChromeVox is an ideal tool for developers to test

accessibility in their day to day development work.

Chapter 2 Summary

In Chapter 2, a more detailed description of WAI-ARIA was provided,

with a discussion of when and when not to use it, understanding

WAI-ARIA roles, states, and properties, as well as differences

between static and dynamic application of WAI-ARIA. Though some

WAI-ARIA can be added directly to HTML as static attributes, in

many cases WAI-ARIA is added dynamically as needed using

JavaScript. We also looked at support across assistive technologies

Book Recap | 271

(AT) and web browsers. Currently (as of February 2019), support is

varied across these technologies but improving constantly.

We also introduced graceful degradation and progressive

enhancement as development methods that can be employed to

ensure that elements that may not yet be supported across all

technologies have alternatives available as fallbacks, ensuring

features are functional regardless of the technology being used.

Despite the variation in support for WAI-ARIA, developers are

encouraged to use it now, with the assumption that support for it

will continue to improve over the coming years.

We also introduced LightHouse and aXe, two tools that can be

used to validate WAI-ARIA to ensure it is being used correctly. These

tools can be added to Chrome, along with ChromeVox introduced

in Chapter 1, to have a collection of accessibility testing tools at

your fingertips when developing for the Web. Finally the WAI-ARIA

Taxonomy was introduced to help participants visualize the

structure and relationships between WAI-ARIA roles, states, and

properties.

Chapter 3 Summary

In Chapter 3, you built upon your understanding of WAI-ARIA with

some practical implementations by looking at landmarks for

implementing within page navigation for screen reader users, alerts

and messages for providing easy access feedback, the new tabindex

values 0 and -1 used to add keyboard access to elements that do

not typically have keyboard access, and development of roving

tabindexes that add and remove keyboard access as needed as users

interact with a widget or application.

We also looked briefly at the WAI-ARIA application and

presentation roles. The application role is typically used with

embedded web applications where keyboard interaction needs to be

intercepted so the application itself is being operated on rather than

272 | Book Recap

interacting with the assistive technology (AT) or the web browser.

When using the application role, care must be taken to not disable

other critical interactions with the web browser or AT and create

unintended barriers when standard functionality becomes disabled.

The presentation role is used to hide elements from screen

readers. They are typically used to hide table semantics when they

are used for layout and to hide away images that are decorative.

In the latter case, the presentation role works much like a null alt

attribute would. Like the application role, care must be taken when

using the presentation role to ensure meaningful information about

the content is not being removed inadvertently.

Finally, we introduced live regions as a way to present updating

information in web content. Typically, a screen reader processes

the HTML of a page when it loads, and when content in the page

changes, such as a newsfeed adding a new headline, they may not

notice that change. Live regions are a way to make that updated

information available to a screen reader, but care must be taken to

ensure that information that updates frequently does not interfere

with a screen reader’s ability to read content elsewhere on the page.

Chapter 4 Summary

In Chapter 4 and the two chapters that follow, the focus moved

to practical implementation of WAI-ARIA, looking at specific

interactions and the types of information that need to be available

to assistive technologies to ensure these interactions are accessible

to users of these AT.

In this unit, we looked specifically at:

• Suggestion Boxes: Instructions were provided on how to use

the suggestion box, which provides suggested terms as letters

are typed in, based on those letters. A live region was added to

announce suggestions, and keyboard access was provided

Book Recap | 273

through the arrow keys scripted to navigate the suggestion list.

• Tooltips: When a parent element with a tooltip receives focus,

the tooltip appears in a live region and reads out loud. When

focus moves away, the tooltip disappears.

• Progress Bars: Instructions were provided on how to operate

the progress bar with a keyboard to announce the status of the

progress and indicate how far along progress is.

Chapter 5 Summary

In Chapter 5, the widgets got a little more complex. These included:

• Sliders: A slider bar and a slider thumb were created, minimum

and maximum values were set for the slider bar, and an

increment was set for the slider thumb, with each movement

of the thumb moving a specific distance along the slider bar.

Instructions were provided on how to operate the slider, with

arrow keys used to move left and right across the slider bar,

and Home and End keys used to move the slider thumb

between the start and end of the slider bar.

• Accordions: Two types of accordion interactions were

introduced: single or multiple accordion panels. They were

each opened one at a time and opened or closed by toggling

accordion headers with the Enter key or space bar. The Tab

key was used to navigate into an accordion, to navigate from

one header to another, or to navigate from a header to its

associated panel. Arrow keys were also used to navigate

between accordion headers but not to their associated panels.

• Tab Panels: Much like accordions are used to conserve space,

tab panels provide similar functionality, though typically

content is arranged horizontally whereas accordions typically

arrange content vertically. The Tab key is used to navigate into

the tabpanel’s tabs to navigate from tabs to their associated

274 | Book Recap

panels and to exit the tabpanel. The Left and Right Arrow keys

are used to move between tabs, and when a panel has focus,

Shift + Tab is used to return focus to the tablist. The semantics

of the list used to create the tabpanel are replaced with tab

panel semantics.

• Carousels: Again, carousels are used to conserve space,

presenting a series of slides or panels that contain images and

text. A carousel typically rotates between panels automatically.

When the Tab key is used to enter the carousel, automatic

rotation stops, allowing users to spend as much time as they

need to consume the information on each panel. The Left and

Right Arrow keys are used to move between panels in the

carousel. When the carousel has focus, a live region is created

using the containing <div>, so as each slide comes into view its

content is automatically read. When the Tab key is used to exit

the carousel, the live region is removed and auto-rotation is

restored. Removing the live region ensures the content of the

slides does not continue to read out loud while the user is

navigating other areas of the page.

Chapter 6 Summary

In this final unit, the widgets got more complex yet.

• Menu Bars: Menu bars typically appear as a set of nested lists,

with the top level list arranged horizontally across the top of a

page and sublists acting as submenus. Specific menu bar and

menu WAI-ARIA attributes were used to replace the list

semantics with menu semantics, making them easier to

understand when operating them with a screen reader. The

Tab key is used to enter and exit the menu bar. Arrow keys are

used to move between menu items, the space bar is used to

open a submenu, and Esc is used to close an active submenu.

Book Recap | 275

• Tree Menu: Tree menus often appear down the side of a page

and include top-level topics and related subtopics that expand

or contract with a toggle. Subtopics may open several levels

deep. The Tab key is used to enter and exit the tree menu, and

Up and Down Arrows are used to move between the menu

items that are displayed. A roving tabindex is used to prevent

focus on menu items that are not being displayed. When a

menu item is accessed that has subtopics, the space bar or the

Enter key can be used to toggle submenus open or closed.

When a menuitem with a submenu receives focus, its state —

expanded or collapsed — is announced by the screen reader. At

any time while in the tree menu, pressing the Tab key exits the

menu.

• Sortable List: The sortable list is a type of drag and drop

widget. Many of these currently found on the Web are difficult

or impossible to use with a keyboard alone, making them

inaccessible to many users. The Tab key is used to enter and

exit the list. Instructions are provided on how to operate the

list using a keyboard. Up and Down Arrows are used to move

up and down through the list. As list items receive focus, they

announce as movable to indicate that they can be rearranged.

Pressing Command, Alt + Ctrl, or just Alt — depending on the

browser and operating system — along with the Up or Down

Arrows, moves an item to an adjacent location in the list,

announcing the new location for that item.

276 | Book Recap

Web Accessibility for
Developers Toolkit

Toolkit Items Collected

Toolkit: Provides useful tools and resources for your future

reference.

• Join GitHub

• SourceTree

• GitHub Desktop

• jQuery UI Accessibility Enhancements

• Accessible MooTools Widgets

• WAI-ARIA Authoring Practices 1.1

• ARIA Techniques for WCAG 2.0

• Using WAI-ARIA

• ChromeVox Screen Reader

• ChromeVox_Key_Commands (Word)

• The ARIA Role Matrices

• WAI-ARIA Screen Reader Compatibility

• WAI-ARIA Browser Compatibility

• ARIA Alert Support

• User Agent Support Notes for ARIA Techniques

• W3C HTML Validator

• Chrome Developer Tools

• Lighthouse

• ARIA Validator

• aXe (for Chrome)

Web Accessibility for Developers
Toolkit | 277

• aXe (for Firefox)

• Combobox

• Grid

• Listbox

• Menu or menu bar

• Radiogroup

• Tabs

• Toolbar

• Tree View

278 | Web Accessibility for Developers Toolkit

Answer Key: Self-Tests

Self-Test 1

1. What options are there for submitting book assignments? Choose

all that apply.

[Incorrect] a. Upload files to the assignment dropbox in

Pressbooks.

[Correct] b. Submit a URL to your files on GitHub.

[Incorrect] c. Email your assignment to the instructor.

[Correct] d. Submit a URL to your files on a server you have

FTP access to.

[Incorrect] e. Upload files to the assignment DropBox folder.

Feedback: You may submit a URL to your activity files either

on GitHub (i.e., GitHub Pages), or on a web server you have FTP

access to.

2. Where can you get a copy of the activity files? Choose all that

apply.

[Incorrect] a. Downloading from the activity file manager

[Correct] b. Forking and cloning from GitHub

[Correct] c. Downloading from GitHub

[Incorrect] d. Ask the instructor to email them to you

[Incorrect] e. Download them from the assignment DropBox

folder

Feedback: You may download the learnaria.github.io

repository files from github.com, or you may fork the

repository to your own GitHub account and clone them from

there into your own development environment.

3. What prerequisite knowledge is needed to be effective with the

activities in this book? Select all that apply.

[Incorrect] a. No prerequisite knowledge is required.

[Incorrect] b. The ability to write JavaScript

Answer Key: Self-Tests | 279

[Correct] c. The ability to read and understand JavaScript

[Correct] d. The ability to read and understand HTML

[Incorrect] e. A strong understanding of WCAG 2

Feedback: Coding experience is strongly recommended, but

not absolutely necessary to follow the book. Your ability to

read and understand JavaScript and HTML code will

determine your success with the activities in tis book.

4. When working with ChromeVox, what key or key combination

can be used to stop it from speaking?

[Incorrect] a. Alt

[Incorrect] b. Cvox + Q

[Incorrect] c. Cvox + D

[Correct] d. Ctrl

[Incorrect] e. Cvox + S

Feedback: The most asked question when using ChromeVox

is how to stop it from speaking. Simply press the Ctrl (control)

key to stop it from talking.

5. When working with ChromeVox, what key or key combination

can be used to turn it off, or on.

[Incorrect] a. Esc

[Correct] b. Cvox + A + A

[Incorrect] c. Cvox + Q

[Incorrect] d. Cvox + D

[Incorrect] e. Ctrl + F5

Feedback: The second most asked question is how to turn

ChromeVox on or off without having to find your way through

Manage Extensions. Press Cvox+A+A to turn the screen reader

on or off while using the Chrome web browser.

6. WAI-ARIA is part of HTML5 and will not work when older

versions of HTML are being used.

[Incorrect] a. True

[Correct] b. False

Feedback: WAI-ARIA works fine with older versions of

HTML, though when validating older HTML, it will produce

280 | Answer Key: Self-Tests

errors or warnings. These errors or warnings can be safely

ignored.

Back to Self-Test 1

Self-Test 2

1. When creating a registration form for a website, it is important

to use role=”form” with the element to ensure screen reader users

understand they are entering a form.

[Incorrect] a. True

[Correct] b. False

Feedback: A form element has its semantics defined by

default, thus does not need a WAI-ARIA role defined. When

using HTML in a standard way, WAI-ARIA should not be used,

with a few exceptions.

2. When talking about WAI-ARIA, we are referring to:

[Incorrect] a. roles, settings, and properties

[Incorrect] b. roles, options, and preferences

[Correct] c. roles, states, and properties

[Incorrect] d. elements, attributes, and functions

[Incorrect] e. elements, options, and preferences

Feedback: WAI-ARIA is made up of HTML attributes that

define roles, states, and properties.

3. Which of the following are not WAI-ARIA roles? Choose all that

apply.

[Incorrect] a. menu

[Incorrect] b. navigation

[Correct] c. aria-label

[Correct] d. tabindex

[Correct] e. aria-describedby

[Correct] f. aria-checked

[Incorrect] g. complementary

Answer Key: Self-Tests | 281

[Correct] h. footer

[Incorrect] i. banner

Feedback: Any WAI-ARIA attribute that is prefixed with

“aria-” will be a state or property, not a role. The tabindex

attribute is special case, extending tabindex in previous

versions of HTML, but it is not a role. Footer is not defined in

WAI-ARIA.

4. WAI-ARIA Properties tend not to change.

[Correct] a. TRUE

[Incorrect] b. FALSE

Feedback: True. States tend to change. Properties do not.

5. WAI-ARIA States tend not to change.

[Incorrect] a. TRUE

[Correct] b. FALSE

Feedback: False. States do tend to change.

6. Which of the following tend to be used dynamically, with values

updated using scripting? Choose all that apply.

[Incorrect] a. role=”menu”

[Correct] b. aria-disabled=”true”

[Incorrect] c. aria-haspopup=”true”

[Incorrect] d. aria-modal=”true”

[Correct] e. aria-checked=”true”

[Correct] f. aria-expanded=”false”

[Correct] g. aria-hidden=”true”

Feedback: Typically states will be dynamically updated with

scripting (aria-disabled, aria-checked, aria-expanded, aria-

hidden) while properties tend to be static, and do not usually

change (aria-haspopup, aria-modal). Roles also tend to be

static, and do not require updating values with scripting.

7. ______________ starts with a version that works for

everyone, then adds features when they are supported.

[Incorrect] a. Graceful degradation

[Correct] b. Progressive enhancement

Feedback: Progressive enhancements starts with a base

282 | Answer Key: Self-Tests

version that works for everyone, and are “enhanced” with

additional features where they are supported.

8. Generally, which method is preferred?

[Incorrect] a. Graceful degradation

[Correct] b. Progressive enhancement

Feedback: For broadest support, progressive enhancement

is generally preferred, to ensure that regardless of the

technology a person may be using, there will always be a

functional version available.

Back to Self-Test 2

Self-Test 3

1. Which of the following are landmark roles? Choose all that apply.

[Incorrect] a. menu

[Correct] b. navigation

[Incorrect] c. aria-label

[Incorrect] d. tabindex

[Incorrect] e. aria-describedby

[Incorrect] f. aria-checked

[Correct] g. complementary

[Incorrect] h. footer

[Correct] i. banner

Feedback: Navigation, complementary, and banner are

landmark roles.

2. Which would usually be the best approach to provide

feedback to a screen reader user with a message that an

operation just completed was successful or has failed

presenting an error message?

[Incorrect] a. aria-live=”polite”

[Correct] b. role=”alert”

[Incorrect] c. role=”alertdialog”

Answer Key: Self-Tests | 283

[Incorrect] d. role=”dialog”

[Incorrect] e. aria-modal=”true”

Feedback: Though you could use aria-live=”polite” to

present feedback, the best approach is usually to use

role=”alert”.

3. Keyboard interaction in web widgets and applications should be

(choose all that apply):

[Correct] a. Predictable

[Incorrect] b. Redundant

[Incorrect] c. Easy

[Correct] d. Consistent

[Correct] e. Conventional

Feedback: Keyboard interaction should be predictable,

consistent, and conventional.

4. Which of the following WAI-ARIA roles, when active, would

disable keyboard access to the file menu in a web browser?

[Correct] a. Application

[Incorrect] b. Menu

[Incorrect] c. Menubar

[Incorrect] d. Navigation

[Incorrect] e. Presentation

Feedback: The Application role would disable the browser’s

file menu.

5. When role=”presentation” is used on an unordered list element,

semantics for which of the following elements would be fully

suppressed? Choose all that apply.

<ul role=”presentation”>…

[Correct] a. UL

[Correct] b. UL>LI

[Incorrect] c. UL>LI>UL

[Incorrect] d. UL>LI>OL

[Incorrect] e. UL>LI>UL>LI

284 | Answer Key: Self-Tests

Feedback: Only the semantics of the top level UL and it’s

immediate children will be suppressed. That is, the first level

UL and its first level child LIs.

6. Which of the following create live regions that announce

changes in the content to screen readers? Choose all that apply.

[Correct] a. role=”alert”

[Correct] b. aria-live=”polite”

[Correct] c. role=”timer”

[Correct] d. role=”log”

[Incorrect] e. role=”live-region”

Feedback: All except the last choice will create live regions.

role=”live-region” is not a WAI-ARIA role or live region.

7. Which of the following would be good candidates for a live

region? Choose all that apply.

[Incorrect] a. A timer counting down by seconds

[Correct] b. A dynamically injected feedback message

[Correct] c. A news feed from a local news provider

[Correct] d. A twitter feed that receives occasional updates

[Correct] e. A chat application, for communicating in real time

Feedback: A timer may also be a live region, but counting

down by seconds may make the content on the page it is

embedded in unusable. A timer counting down by minutes

(e.g., minutes until the end of a quiz) would be a better

candidate.

Back to Self-Test 3

Answer Key: Self-Tests | 285

Acknowledgements

This book was made possible with a grant from The Government of

Ontario’s Enabling Change Program. Content was written by Greg

Gay, with help from the team at Digital Education Strategies at

The Chang School, Ryerson University, and the original code and

the jQuery library used to create the activities for the course were

written by Igor Karasyov.

286 | Acknowledgements

	Web Accessibility for Developers
	Web Accessibility for Developers
	Contents
	Introduction
	Getting the Most Out of This Book
	Who Should Read This Book
	Accessibility Statement
	Background
	Types of Disabilities and Barriers
	Why Learn About Accessible Web Development
	AODA Background
	About WCAG and WAI-ARIA

	1. Introduction
	Objectives and Activities
	Submitting Coding Assignments and Using GitHub
	Activity 1: How to Submit Assignments
	Introduction to the jQuery Plugin
	Other WAI-ARIA Libraries
	ChromeVox Screen Reader Install and Setup
	Activity 2: Set Up and Use ChromeVox
	WAI-ARIA and HTML 5
	Self-Test 1

	2. Introduction to WAI-ARIA
	Objectives and Activities
	What is WAI-ARIA?
	Roles, States, and Properties
	Static vs. Dynamic WAI-ARIA
	Browser and Screen Reader Support for WAI-ARIA
	Graceful Degradation vs. Progressive Enhancement
	Validating WAI-ARIA
	WAI-ARIA Taxonomy
	Activity 3: WAI-ARIA Scavenger Hunt
	Self-Test 2

	3. Basic WAI-ARIA
	Objectives and Activities
	WAI-ARIA Landmarks
	Common Static WAI-ARIA
	WAI-ARIA Alert and Message Dialogs
	Using Tabindex
	Keyboard Interaction
	Application and Presentation Roles
	Live Regions
	Activity 4: WAI-ARIA Landmarks and Alerts
	Self-Test 3

	4. Interactive WAI-ARIA (Basic)
	Objectives and Activities
	Toggle Buttons (Activity Example)
	Suggestion Boxes
	Activity 5: Accessible Suggestion Box
	Tooltips
	Activity 6: Accessible Tooltips
	Progress Bars
	Activity 7: Accessible Progress Bar

	5. Interactive WAI-ARIA (Intermediate)
	Objectives and Activities
	Sliders
	Activity 8: Accessible Slider
	Accordions
	Activity 9: Accessible Accordion
	Tab Panels
	Activity 10: Accessible Tab Panel
	Carousels
	Activity 11: Accessible Carousel

	6. Interactive WAI-ARIA (Advanced)
	Objectives and Activities
	Menu Bars
	Activity 12: Accessible Menu Bar
	Tree Menus
	Activity 13: Accessible Tree Navigation
	Sortable Lists
	Activity 14: Accessible Sortable List

	Book Recap
	Web Accessibility for Developers Toolkit
	Answer Key: Self-Tests
	Acknowledgements

